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Abstract. In this paper an attempt is made to present very recent conceptual and computational
developments in quantum field theory (QFT) as a new manifestation of old well-established physical
principles. The vehicle for converting quantum algebraic aspects of local quantum physics into
more classical geometric structures is the modular theory of Tomita. As the laureate E H Wichmann,
together with his collaborators showed for the first time in sufficient generality, its use in physics
goes beyond Einstein causality. This line of research recently gained momentum when it was
realized that it is not only of great structural and conceptual innovative power, but also promises a
new computational road into nonperturbative QFT which, figuratively speaking, enters the subject
on the extreme opposite (noncommutative) side relative to (Lagrangian) quantization.

1. Introduction

Among the fundamental physical principles of this century which have stood their ground in the
transition from classical to quantum physics, relativistic causality as well as the closely related
locality of quantum operators (together with the localization of quantum states) is certainly
the most prominent one.

This principle entered physics through Einstein’s 1905 special relativity, which in turn
resulted from bringing the Galilean relativity principle of classical mechanics into tune with
Maxwell’s theory of electromagnetism. Therefore, it incorporated Faraday’s ‘action at a
neighbourhood’ principle which revolutionized 19th century physics.

The two different aspects of Einstein’s special relativity, namely Poincaré covariance and
the locally causal propagation of waves in Minkowski space were kept together in the classical
setting. In the adaptation of relativity to LQP (local quantum physics‡), on the other hand [1], it
is appropriate to keep them, at least initially, apart in the form of positive-energy representations
of the Poincaŕe group (leading to Wigner’s concept of particles) and Einstein’s causality of
local observables (leading to observable local fields and local generalized ‘charges’). Here a
synthesis is also possible, but it occurs on a deeper level than in the classical setting and results
in LQP as a new physical realm which is conceptually very different from both classical field
theory and general QT (quantum theory). The elaboration of this last point constitutes one
of the aims of this paper. We pay particular attention to those aspects of LQP which are not
within the reach of standard quantum physical intuition.

∗ Dedicated to Professor Eyvind H Wichmann on the occasion of his 70th birthday.
† Present address: CBPF, Rua Dr Xavier Sigaud, 22290-180 Rio de Janeiro, Brazil.
‡ We use this terminology whenever we want to make clear that we relate the principles of QFT with a different
formalism than that based on quantization through Lagrangian formalism.
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The most remarkable aspect of quantum field theory (QFT) in its more than 60-year
existence, in addition to its great descriptive and computational success in perturbative QED
and the standard model, is certainly the enduring nature of its causality principle. In addition to
experimental support through the validity of the Kramers–Kronig dispersion relations in high-
energy collisions up to the shortest accessible distances, it is also the various unsuccessful
theoretical attempts to construct viable nonlocal theories† which testify to the strength of
this principle. Despite intense efforts and much talk, nobody has succeeded in constructing
a viablenonlocal theory. The cutoff in Feynman-like integrals or in Euclidean functional
integrals (which violate the prerequisites for continuability to real-time LQP) introduced by
phenomenologists in order to combat the apparent ‘bad’ short-distance behaviour stemming
from perturbative causality down to arbitrary small distances (which threaten the mathematical
existence of models) are no substitute for a conceptual analysis of whether a viable nonlocal
theory with an elementary length which maintains a particle interpretation is at all possible‡.
Here, ‘viable’ is more than mere mathematical existence, it is meant in the physical sense
of conceptual completeness. One requires that a theory shouldcontain its own physical
interpretationi.e. that one does not have to invent or borrow formulae from outside this theory
as, for example, in phenomenological ‘effective’ QFT. In the latter case, most formulae linking
the calculations with measurable quantities cannot be derived or justified but, as expected
in a phenomenological approach, have to be taken from a more complete and fundamental
framework. In addition, ‘effective’ indicates that objects with this prefix such as Lagrangians,
actions etc should be dealt with using different rules such as those in renormalized perturbation
theory. On the other hand, in a complete framework such as LQP, one cannot only derive (LSZ)
scattering formulae which constitute an important aspect of particle interpretation, but one can
also obtain the composition laws of charges, analytic and crossing properties of fields in particle
states etc; in fact there is presently no important structural or epistomological property which
the principles of LQP cannot address or account for. Only when it comes to the quantitative
understanding of particle interaction processes does one have to resort to specific models, even
though their full control is often very problematic as a result of the absence of systematic and
reliable nonperturbative methods.

In contrast to statements one sometimes finds in the literature, there is no known
nonlocal Poincaŕe covariant scheme, which guarantees the existence of a time-dependent
(or its stationary reformulation) scattering formalism together with the analytic and crossing
properties of matrix elements of theS-operator and formfactors of local fields, which therefore
could be used in particle physics. Hence the importance of causality is also highlighted by the
failure of nonlocal modifications and the conspicuous absence of physically viable alternatives.
It is quite instructive to look briefly at some of the more prominent failed attempts.

In the 1950s there were already proposals to inject nonlocal aspects through extended
interaction-vertices in Lorentz invariant Lagrangians. As mentioned before, this was motivated
by the hope that a milder perturbative short-distance behaviour in correlation functions may
be helpful for demonstrating the mathematical existence of the theory. It was soon realized,
that if one pursues the effect of such modifications up to infinite order in perturbation theory,
these nonlocal vertices would even wreck macrocausality so that the theory loses its physical
interpretation altogether. A similar fate occurred to the later proposal of Lee and Wick [2] to

† The meaning of ‘nonlocal’ in this paper is not that of extended charged objects in a theory of local observables
(example: semi-infinite string-like spatial extensions of anyons or plektons ind = 1 + 2 in order to support their
Abelian/non-Abelian braid group statistics), but rather refers to hypothetical theories which have a fundamental cutoff
or elementary length in their algebra of observables.
‡ A good antidote against speculations or light-hearted attitudes that, e.g., rotational invariant Euclidean cutoffs (or
any other kind of cutoff which formally can be expected to maintain Lorentz covariance) could define a consistent
nonlocal real-time theory, is to try to introduce one into one of the exactly solvabled = 1 + 1 factorizing models.
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allow for complex (+ complex conjugate, in order to maintain hermiticity) poles in Feynman
rules; it led to unacceptable time precursors [3]. In the last section we present some results
on a new nonperturbative framework which incorporates and explains all the results obtained
so far on explicit non-Lagrangian low-dimensional model constructions. The very concepts
of this approach use causality and locality in a much more essential way than the various
quantization approaches and, in addition, this method throws considerable doubt on the belief
that the perturbative link between good short-distance behaviour and the existence of the theory
has general validity.

Often the renormalization group ideas are used to justify a physical cutoff with the
hope that by softening short-distance behaviour the model becomes mathematically better
defined and managable. But physical principles should receive their limitation, as always
happened in the past, from other more general principles and not from parameters into which
one tries to ‘dump’ ones lack of knowledge about the mathematical existence of the theory
within the presently known principles. A phenomenologically successful parameter with fixed
computational prescriptions is, by itself, no substitute for a physical principle. Physical reality
may unfold itself like an onion with infinitely many layers of ever more general physical
principles tending towards the small, but it should still be possible to have a mathematically
consistent theory in each layer which is faithful to the principles valid in that layer. This has
been fully achieved for quantum mechanics (QM), but this goal was not reached in QFT due
to a lack of nontriviald = 1 + 3 models or structural arguments which could demonstrate that
the requirements allow for nontrivial solutions. Even the recently emphasized duality between
asymptotically small/large coupling parameters only resulted in the rephrasing of the problem
to: does there exist a QFT which possesses these two asymptotes.The existence problem of
interacting QFTs ind = 1 + 3, which persists to present times, sets QFT apart from any other
physical theory such as QM, statistical mechanics or classical particle/field theories. In all of
those cases one has explicit examples as well as proofs that the ‘axioms’ are consistent with
nontrivial dynamics. In this context one should note that lattice theories define a different
(mathematically easier) framework which, if suitably restricted, shares the fact with QFT that
it is conceptually complete as far as the notion of particle excitations and their scattering theory
(based on cluster properties as a substitute for the missing locality) is concerned. In fact, the
correlation functions of lattice algebras are expected to converge towards those of QFT in an
appropriately defined scaling limit. Despite some control of the extremely difficult scaling
limits in certain special models such as thed = 2 Ising-like models, the relation between the
two theories is still not largely understood.

Recently, there has been a more sophisticated attempt to go beyond the causal setting of
LQP via the use of noncommutative space-time [4], based on spatial uncertainty relations
following from a quasiclassical quantization interpretation of Einstein’s field equation of
general relativity and the assumed absence of very small black holes (similar uncertainty
relations for the complete set of coordinates and momenta (i.e. for phase space) have been
postulated on the basis of string theory [5]). These proposals, especially if they are backed
up by uncertainty relations whose derivation is carried out in the spirit of Bohr–Rosenfeld as
in [4], are not as easily dismissed as the two previous ones. Such attempts do not just try
to graft cutoffs or elementary length onto the standard (Lagrangian, functional integral) local
framework, but rather are receptive to more radical changes of the fundamentals of QFT. It is not
easy to confront such speculative new ideas with LQP, because it is more difficult to physically
interpret in such unusual frameworks than it is to rule out implanting cutoffs into the standard
framework. Whereas it is easy to agree that sufficient intelligent noncommutative space-time
proposals may serve as interesting tests for exploring the unknown territory beyond the reign
of Einstein causality, they are still far from being models for the elusive ‘quantum gravity’,
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since they only replace the classical space-time indexing of nets with a noncommutative one.
However, any step beyond the present causal framework must re-obtain Einstein causality as a
limiting statement within some yet unknown new physical principle. Recently there have been
many promises on the basis of string theory. But unfortunately string theory, even aside from
the total lack of experimental motivation, has hardly added anything to conceptual problems
despite its undeniable mathematical enrichments. In fact, in its present state it is mainly a loose
set of calculational recipes which suffer from a very unfortunate preference of formalism over
conceptual clarifications. Whereas LQP allows an intrinsic characterization (e.g. in terms of
correlation functions or observable nets) independent of the way they have been manufactured
(e.g. Lagrangian quantization, bootstrap-formfactor method ind = 1 + 1), string theory, in its
more than 20-year existence, has not led to objects with an intrinsic meaning independent of
the computational rules, in addition to its experimental invulnerability which it acquired after
it changed interpretation from the old string theory of the dual model for strong interaction
at laboratory energies to an alleged theory of quantum gravitation thus jumping 15 orders
of magnitude. On the theoretical side, such fundamental questions as whether strings are
localized objects in space-time (as the name seems to indicate) or if the name is a shorthand
notation for specific spectral features have not been settled yet. Whereas, admittedly many
of the popular formulations of QFT based on canonical or functional integral quantization
also start from extrinsic formal requirements which in most cases cannot be maintained after
renormalization†, there exist at least various intrinsic formulations.

Causality and locality are related in a profound way to the foundations of quantum theory
in the spirit of von Neumann. In von Neumann’s formulation, observables are represented by
self-adjoint operators and measurements are compatible if the operators commute. The totality
of all measurements which are relatively compatible with a given set (i.e. noncommutativity
within each set is allowed) generate a subalgebra: the commutantL′ of the given set of operators
L. In LQP, a conceptual framework which was not available to von Neumann, one is dealing
with an isotonic ‘net’ of subalgebras (in most physically interesting cases von Neumann factors,
i.e. with a trivial centre)O → A(O), such that, unlike QM, the spatial localization and the
time duration of observables becomes an integral part of the formalism.Causality gives an a
priori information about the size of space-timeO-affiliated operator von Neumann algebras:

A(O)′ ⊃ A(O′). (1)

In words, the commutant of the totality of local observables localized in the space-time region,
O, contains the observables localized in its space-like complement (disjoint)O′. In fact, in
most cases the equality sign will hold in which case one calls this strengthened (maximal)
form of causality ‘Haag duality’‡:

A(O)′ = A(O′). (2)

In other words, the space-like localized measurements are not only commensurable with the
given observables inO, but every measurement which is commensurable with all observables
in O is necessarily localized in the causal complementO′. Here we extended, for algebraic
convenience, von Neumann’s notion of observables to the whole complex von Neumann algebra
generated by Hermitian operators localized inO. If one starts the theory from a net indexed by
compact regionsO as double cones, then algebras associated with unbounded regionsO′ are

† Apart from some less interesting super-renormalizable models, the physically meaningful renormalizable objects
(which are also the only ones with a chance of mathematical existence) are neither canonical nor representable by
functional integrals, but still fulfil the property of Einstein causality together with certain spectral properties. The
so-called ‘causal perturbation theory’ (see later) furnishes a more harmonious intrinsic formulation for which the
initial requirements are also reflected in the results, and not only as a ‘catalyzer’ of the mind.
‡ See [1], and for more details on aspects related to my notes see [6].
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defined as the von Neumann algebra generated by allA(O1) if O1 ranges over all net indices
O1 ⊂ O′.

Whereas the Einstein causality (1) allows a traditional formulation in terms of point-like
fieldsA(x) as

[A(x),A(y)] = 0 (x − y)2 < 0 (3)

Haag duality can only be formulated in the algebraic net setting of LQP. This aspect is shared
by many important properties and results presented in this paper. LQP is much more than a
teutonic pastime of reformulating properties of fields in terms of algebraic properties of nets,
as one immediately realizes if one looks at Haag’s book.

One can prove that Haag duality always holds after a suitable extension of the net to the
so-called dual netA(O)d .The latter may be defined independent of locality, in terms of relative
commutation properties, as

A(O)d :=
⋂

O1,O′1⊂O
A(O1)

′. (4)

It is easy to check that the dual net is relatively local to the original net

A(O1) ⊂ (A(O)d)′ O1 ⊂ O′. (5)

In fact, it is the maximal net relatively local toA(O). Repeating this process, one obtains
A(O)d ⊂ A(O)dd and A(O)d = A(O)ddd . Causality of the original net then means
A(O) ⊂ A(O)d, and, therefore, alsoA(O)dd ⊂ A(O)d = A(O)ddd . It is customary to
use the word locality instead of causality if one allows field algebras which involve fermionic
structures. Local algebras retain all of the mathematical properties of observable algebras
in that they contain no local annihilators. The extension by charged objects with braid
group statistics (only possible in space-time dimensiond < 1 + 3) may lead to algebras
(acting in a larger Hilbert space) with weaker locality properties and the appearance of local
annihilators. Such objects are called ‘localizable’ since they maintain theirrelative locality
with respect to the neutral observable subalgebra. The causal disjoint of the region of relative
commutation is the localization region of these charged operators. These considerations
show that causality, locality and localization in LQP have a close relation to the notion of
compatibility of measurements [7]. The fundamental reason for all such modifications in the
interpretation of LQP versus QM is the different structure of local algebras: the vacuum is
not a pure state with respect to any algebra which is contained in anA(O) with O′ nonempty,
and the sharply localized algebrasA(O) do not admit any pure states at all! Since these fine
points can only be appreciated with some more preparation, I will postpone their presentation.
Note that the quantization approach to QFT based on the use of classical actions in Euclidean
functional integrals (and the subsequent use of analytic continuation to get back to real space-
time) is a global attempt to characterize vacuum expectation values of a would be theory. The
classical locality in the sense of local polynomial expressions in fields and derivatives has no
direct conceptual relation with the real time locality in the above sense; in fact the analytically
continued ‘fields’ in the Euclidean points are extremely nonlocal relative to the real-time fields.
Unlike in statistical mechanics, it does not make sense to restrict the Euclidean integration to
localized configurations with local supports since this has nothing to do with the localization
of real-time physics which is implemented via the restriction of states to localized subalgebras.
Nevertheless, there are sufficient conditions under which the Euclidean correlation functions
do permit one to define models of real-time QFT.

If the vacuum net is Haag dual, then all associated ‘charged’ nets share this property,
unless the charges are non-Abelian; in which case the deviation from Haag duality is measured
by the Jones index of the above inclusion, or in physical terms the statistical or quantum
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dimension. Even if the vacuum representation violates Haag duality, this indicates spontaneous
symmetry breaking [7], i.e. not all internal symmetry algebraic automorphisms are spatially
implementable. As already mentioned, in that case one can always maximize the local algebra
to the dual algebrasAd(O) without destroying causality and without changing the Hilbert
space and in this way Haag duality is restored (‘essential duality’). This turns out to be related
to the descent to the unbroken part of the symmetry which allows (since it is a subgroup)
more invariants, i.e. more observables. Although these matters are good illustrations of the
pivotal role of causality, we concentrate on the closely related modular properties of causal
nets which make their appearance in the next section. QM does not know these concepts at all,
trying to add them would mean leaving QM, since their realization requires infinite degrees of
freedom and the virtual particle structure of the vacuum (together with the ensuing type III1

von Neumann algebra structure of the local algebras which is remarkably different from that
of quantum mechanical algebras).

Another structurally significant deviation is expected to result from the fact that the vacuum
becomes a thermal state with respect to the local algebrasA(O). There are two different
mechanisms which generate thermal states: the coupling with a heat bath and the thermality
through restriction or localization and the creation of horizons. The latter is in one class with
the Hawking–Unruh mechanism; the difference being that in the localization situation the
horizon is not classical, i.e. is not defined in terms of a differential geometric Killing generator
of a symmetry transformation of the metric.

Since the algebras of the typeA(O) do not possess pure states, theO/O′ situation is totally
different from the tensor product factorization in terms of the quantization box inside/outside
in QM. In order to return to a tensor product situation and be able to apply the concepts of
entanglement and entropy, one has to do a sophisticated split which is only possible if one
allows for a ‘collar’ (see later) betweenO andO′. These considerations show that certain
things which one takes for granted as properties of general QT actually lose their validity in
LQP.

Since the thermal aspects of localization are analogous to those of black holes, there is no
chance to directly measure such tiny effects. However, in conceptual problems, e.g. the question
of if and how not only classical relativistic field theory but also QFT excludes superluminal
velocities, these subtle differences play a crucial role. Imposing the usual algebraic structure
of QM onto the theory of photons will lead to nonsensical results. Most sensational theoretical
observations on causality violations which are not already incorrect on a classical level suffer
from incorrect tacit assumptions. We urge the reader to read [18] and also look at the source
for that rebuttal.

Historically, the first conceptually clear definition of localization of a relativistic
wavefunction was given by Newton and Wigner [8] who adapted Born’sx-space probability
interpretation to the Wigner relativistic particle theory. Apparently, the result that there is no
exact satisfactory relativistic localization (but only one sufficient for all practical purposes),
disappointed Wigner so much that he became distrustful of the consistency of QFT in particle
physics altogether (private communication by R Haag). Whereas we know that this distrust
was unjustified, at the same time we should acknowledge Wigner’s stubborn insistence on the
importance of the locality concept as an indispensable particle physics requirement in addition
to the positive-energy property and irreducibility of his representations theory. Modular
localization of subspaces of the Hilbert space and of subalgebras, on the other hand, are
not related to the Born probability interpretation. Rather, modular localized state vectors
pre-empt the existence of causally localized observables and have no counterpart at all inN -
particle QM. As is explained later, modular localization may serve as a starting point for the
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construction of interacting nonperturbative LQPs [6, 10]†. It is worthwhile emphasizing that
sharper localization of local algebras in LQP is not defined in terms of smaller support properties
of classical smearing functions of smeared fields but rather in terms of the intersection of
algebras; although in many cases such as CCR- or CAR-algebras (or more generally Wightman
fields) the algebraic formulation (1) can be reduced to this more classical concept.

Since the modular structure is related in a fundamental way to thermal behaviour, it is not
surprising that the issue of thermality is also related with localization. In fact, as mentioned
before, there are two manifestations of thermality, the standard heat-bath thermal behaviour
which is described by the Gibbs formula (or after having performed the thermodynamic limit
by the KMS condition), and thermality caused by localization with either classical bifurcated
Killing-horizons as in black holes [9], or in a purely quantum manner as the boundary of the
Minkowski space wedges or double cones. In the latter case the KMS state has no natural
limiting description in terms of a Gibbs trace-formula (which only applies to type I and II,
but not to type-III von Neumann algebras), a fact which is also related to the fact that the
Hamiltonian (of the ground state problem) is bounded from below, whereas, e.g., the Lorentz
boost (the modular operator of the wedge algebra in the vacuum state), is not [10]. In [11] the
reader also finds a discussion of localization and cluster properties in a heat-bath thermal state.
In this paper we do not enter these interesting thermal aspects. Recent results indicate that the
division between heat bath- and localization-thermality may not be as sharp as it appears at
first sight [55].

2. Locality and free particles

The best way to make the pivotal nature of causality manifest is to enter QFT via Wigner’s
group theoretical characterization of particles by irreducible positive-energy representations
with good localization properties. It is well known that the Wigner wavefunctionsψ of massive
spin-s particles have 2s + 1 components and (differently from covariant fields) transform in a
manifestly unitary butp-dependent way:

(U(3)ψW)(p) = R(3,p) · ψW(3−1p). (6)

The transition to covariant wavefunction and fields is performed with the help of intertwiners
u(p, s3), resp. the rectangular matrixU(p), constructed from their 2s + 1 column vectors of
length(2A + 1) · (2B + 1):

U(p)D(s)(R()) = D(A,B)(3)U(3−1p) (7)

i.e., within Wigner’s Poincaŕe group positive-energy representation theory one can intertwine
the rotations (with thep-dependent WignerR-matrix) with the (dotted and undotted) finite-
dimensional spinor representationsD(A,B). Since theD(s) representation of the rotations is
‘pseudo-real’, there exists another intertwiner matrixV (p) which is ‘charge-conjugate’ to
U(p). To each of the infinitely many intertwiner systems (the only restriction onA,B for a
given physical spins is |A−B| 6 s 6 |A+B|) one has a local field obeying the spin-statistics
connection:

ψ(A,B)(x) = 1

(2π)
3
2

∫ (
e−ipx

∑
u(p, s3)a(p, s3) + eipx

∑
v(p, s3)b

∗(p, s3)
)

d3p

2p0
(8)

† In fact, the good modular localization properties of positive-energy properties, with the exception of Wigner’s
infinite component ‘continuous spin’ representations, are guaranteed. Only in the infinite component case it is not
possible to come from the wedge localization to the space-like cone localization, which is the coarsest localization
from which one can still obtain a Wigner particle interpretation.
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wherea, b are the (creation) annihilation operators associated with the Fock space enlargement
of the Wigner representation space and hence independent of the choice of intertwiners. All the
different fields are describing the same(m, s) particle physics and live in the same Fock space.
They constitute only the linear part of a huge (Borchers) equivalence class of fields. For free
fields, this equivalence class contains, in addition, all Wick-monomials, and it is well known
that they are indispensible for introducing perturbative interactions. The above differentψ ′

can be mutually solved:

ψ(A′,B ′)(x) = M(A′,B ′)
(A,B) (∂)ψ

(A,B)(x) (9)

whereM(A′,B ′)
(A,B) (∂) is a rectangular matrix (matrix indices supressed) involving∂µ derivatives.

Explicit formulae can be found in the first volume of [12]. Among the infinitely many
possibilities, essentially only one is ‘Lagrangian’, i.e. can be used in a quantization approach
starting from a classical Hamiltonian principle. The other descriptions are equally physically
acceptable, since there is no quantization principle which forces one to perform quantum
physics through a classical parallelism with the Lagrangian formalism. In fact, they describe
the same physics in the form of a different ‘field coordinatization’.

Indeed for LQP, point-like fields (8) are like coordinates in differential geometry; the
different covariant realizations of the Wigner representations correspond to linear coordinate
changes, whereas the transition from one cyclically acting field in the Borchers equivalence
class to another constitutes the nonlinear part. Although it may be sometimes convenient to use
them but structural theorems on charge-carrying fields (classification of statistics, including
braid-group statistics for low-dimensional charge carriers, TCP. . . ) andinternal symmetries
(symmetries and their spontaneous breaking a la Nambu–Goldstone, the Schwinger–Higgs
screening mechanism. . . ) arebest done in terms of the properties of the net:

O→ A(O). (10)

The causality and spectral properties of these nets constitute the physical backbone of LQP.
The notion ‘local’ is then extended to all boson and fermion fields, because they allow an
unrestricted iterative application to the vacuum without encountering local annihilators, and
therefore such an extension preserves the important properties of the original observables.
More general charge-carrying fields which extend the above local (bosonic or fermionic) net
are called ‘localizable’ (with respect to the observables). In particular, plektonic (braid-group
statistics)d = 1+2 dimensional fields can never have a Fock space structure and always locally
annihilate charge sectors when the operator domain does not match the range of the charge
sector of the state vector. Although such fields (as some fields used in gauge theory) necessarily
have a semi-infinite (space-like) string-like extension, these charge carriers are associated with
a local net of observables i.e. they do not bring in an aspect of elementary length or any other
restriction of the causality principle. A genuinely nonlocal theory wouldviolate causality in
its observable algebra; as long as the theory admits a causal observable algebra there is no
elementary length, independently of the possibly extended nature of charged operators. In
other words, extended operators which transfer charges and communicate between different
representations of the observables are permitted as long as their commutation relations relative
to the observables reflect their spatial extension in the previously mentioned sense.

It is important to note that the Wigner free fields have operator dimensions (referring to the
short-distance power behaviour) which increase with spin: dimψ(s=0) = 1, dimψ(s= 1

2 )
= 3

2,
dimψ(s=1) > 2. This is the deeper reason why the incorporation of interacting theories into
the scheme of causal renormalized perturbation requires special (BRS) cohomological tricks
for s > 1 (the LQP version of gauge theories, see the next section).

The Wigner approach for (m = 0, h > 1) leads to a more restricted class of intertwiners,
since many representations (e.g. theD( 1

2 ,
1
2 ) vector representation), as a result of the different
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nature of the ‘little’ group,cannotbe intertwined with the physical photon (m = 0, h = 1)
of the Wigner representation theory. In fact, the range of dotted/undotted indices in (8)
is restricted according toh = ±|A − B| [12]. There are two methods to overcome this
restriction; one physical way of introducing a semi-infinite space-like localized vector potential
Aµ(x, n) depending on a space-like string directionn into the Wigner photon space, or the
extension by ghost fields (indefinite metric or different star-operation) formalism which keeps
the formal Lorentz-covariance (together with the point-like nature) in the form of ‘pseudo-
unitarity’ representations. Whereas the first method is physically deeper and more promising,
the second one is the only one which is compatible with the presently known formalism of
renormalized perturbation theory. The latter does not care whether the locality is formal instead
of physical or whether the boost transformations are pseudo-unitary instead of unitary, but the
interpretation does.

The remaining positive-energy representations are Wigner’s famous ‘continuous spin’
representations which are infinite components (infinite-dimensional representations of the
massless ‘little group’). They are usually dismissed by saying that nature does not make use of
them. Apart from the fact that a theoretician should not argue in this way (and in fact does not,
if it comes to supersymmetry), the dismissal is probably founded on the naive identification
of irreducible positive-energy representation with physical particles. This ignores the fact
that particles should be described by states, which in addition to forming irreducible positive-
energy representations, must also have good localization properties. The modular localization
method below reveals that any positive-energy representation can be localized in wedges. For
all positive-energy representations with finite spin/helicity the localization can be sharpened;
for them = 0 continuous spin representations, however, the same methods are inconclusive.
It is doubtful that they admit a sharper localization, needed for particle interpretation including
scattering, and this may cause their disqualification as candidates for physical particles on
the theoretical side. There are also many useful particle-like objects or states which are not
described by (m, s = semi-integer) Wigner representations as, e.g., infraparticles (electron
with photon cloud), ultraparticles, quarks, etc [13]. The borderline between physical particle
and other weakly localizable objects is the string-like (or, more appropriately, space-like-cone)
localization. This localization is still sufficient to derive scattering theory, and on the other
hand, it follows from the existence of field theoretic charge sectors which fulfil the mass
gap assumption [1]. Operators with braid-group commutation relations ind = 1 + 2 which
have one-particle components with mass gaps, are necessarily string-like and lead to anyons
(Abelian, spin arbitrary) or plektons (non-Abelian, spin quantized). Therefore, compactly
(e.g. double-cone) localizable fields and particles ind = 1 + 2 are only consistent with the
permutation group statistics which is a special case of braid-group statistics.

If fields are analogous to coordinates in differential geometry, there should be a way
to at least construct interaction-free nets directly, without ever using free fields. The idea
behind this is to characterize wedge localized real subspaces in Wigner space with the help of
modular operators (instead of Cauchy initial value data). For simplicity assume integer spin
self-conjugate bosons and define a real subspaceHR(Wst ) of HWigner as:

HR(Wst ) = closure of real lin. comb.{ψ |sψ = ψ}
s ≡ jδ 1

2 s2 = 1.
(11)

The notation is as follows:δiτ := U(3x,t (2πτ)) is the Lorentz boost in thex–t direction
associated with the standardx–t wedgeWst := {x ∈ R4; x1 > |x0|}, andj = θ · rotx(χ = π)
is, apart from aπ -rotation around thex-axis, the antiunitary TCP transformationθ acting on the
Wigner one-particle space, which for nonself-conjugate particles consists of a direct sum of the
particle and antiparticle space. The unboundedδ

1
2 > 0 is defined by functional calculus fromδit
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and has a domain consisting of boundary values of an analytically continuable 2s+1 component
wavefunction which have the momentum space rapidity (p0 = m coshθ, px = m sinhθ )
analyticity in the strip−π < Im θ < 0. The unboundeds inherits the densely defined
domain fromδ

1
2 and the antilinearity fromj . The best way to describe this real Hilbert

space of wedge-localized functions is to say that they are strip-analytic and fulfil the Schwartz
reflection principle around the line Imz = − iπ

2 . In the case of antiparticles6= particles one
must double the number of components and use the full charge conjugated wavefunctions in
the reflection principle instead of just the complex conjugate. This is closely related to the
crossing ‘symmetry’ (it is not a symmetry in the standard operational sense of QT) in interacting
systems, about which we will have more to say later. The involutive propertys2 = 1 on this
domain, in mathematical notations2 ⊂ 1, is a consequence of this definition. Such unbounded
(but yet involutive) operators do not occur in any other area of mathematical physics and are
therefore not treated in books on mathematical methods. In fact they seem to be characteristic
of the Tomita–Takesaki modular theory. It is precisely the combination of unboundedness
and involutiveness which is responsible for the emergence of localization and geometrical
properties from domain properties of quantum physical operators. The real closed subspace
may be used to define a dense wedge-localization space†H(Wst ) ≡ HR(Wst ) + iHR(Wst ) on
which the operators acts as:

s(h + ih) = h− ih. (12)

HR(Wst ) is ‘standard’ i.e.

HR(Wst ) ∩ iHR(Wst ) = {0}
H(Wst ) ≡ HR(Wst ) + iHR(Wst ) is dense in HWigner .

(13)

The natural localization topology is the graph norm ofs. It is somewhat unusual and
treacherous that the formula fors looks so universal and the differences in the localization
for different wedgesW3 := 3Wst , Wa := T (a)Wst is solely encoded in the domain of
definition ofs(3,a) (i.e. only where and not how it acts) which he usually considers to be a fine
and somewhat irrelevant technical point. For positive-energy representations the geometric
inclusionWa := T (a)Wst ⊂ Wst , a ∈ Wst (translating wedges into themselves) implies
the proper inclusion (D Guido 1996 private communication)HR(Wa) ⊂ HR(Wst ), in fact
the geometric inclusion properties are equivalent to the positive spectrum condition. For the
understanding of the latter claim one has to decompose the space-likea into two light-like
componentsa± for which one takes, of course, the two light-like vectors by which the wedge
Wst is generated. Different from space-like translations, these light-like translations have a
positive generator.

Having constructed a net of wedge-localized real subspacesHR(W), one may move ahead
and introduce compactly localized spacesHR(O) through intersections of wedges

HR(O) = ∩W⊃OHR(W). (14)

In order to insure the nontriviality of these intersections, one needs to restrict the positive-
energy representations to those with a finite-dimensional representation of the Wigner ‘little
group’ which amounts to (half)integer spin/helicity. In this way one obtains, e.g., the net of
double cones; a direct construction of the associated modular objects is more difficult because
the modular group behaves ‘geometrically’ (i.e. as a diffeomorphism of Minkowski space)
only asymptotically close to the ‘horizon’ (the boundary of the causal closure) of the region.
Note that in order to define these localization spaces, we did not use anyu, v intertwiners. If

† A change of sign in the definition ofHR(W) would not change the dense complex localization space (which is a
Hibert space in the graphs-norm).
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we had, the present intrinsic concept of localization would have been lost and we would have
been back atx-space properties of covariant wavefunctions or pointlike fields, i.e. those field
coordinatizations which destroyed the uniticity. The size of localization is contained in certain
Payley–Wiener–Schwartz type of bounds in imaginary momentum or rapidity directions.

The last step to the nets consists (say for the case of integer spin) in the application of the
Weyl functor which maps real subspaces into the von Neumann subalgebras of a net:

HR(O)
F→ A(O)

A(O) = alg{W(f )|f ∈ HR(O)}
W(f ) = ei(a∗(f1)+h.c.)+i(b∗(f2)+h.c.) f = (f1, f2)

(15)

whereb#, a# stand for (anti)particle Wigner creation and annihilation operators. The functor
F is ‘orthocomplemented’ which means that the symplectic or (by multiplication with i)
real orthogonal complement of a real subspace is mapped into the von Neumann algebraic
commutant. The imagesJ,1it , S of j, δit , s underF are the modular objects of the algebraic
version of the Tomita Takesaki modular theory for the special case of the pair (A(Wst ),�) of
wedge algebra and vacuum vector†.

The general theory says that for a von Neumann algebraA with a cyclic and separating
vector�, the definition:

SA� = A∗� A ∈ A (16)

introduces a closable operator, whose polar decomposition;

S = J1 1
2 (17)

defines a unitary1it and an antiunitary involutionJ which are of fundamental significance
for the pair (A, �). The operator1it defines the ‘modular’ automorphismσt of A (a kind
of generalized Hamiltonian) with respect to� andJ the modular involutionj (a kind of
generalized TCP reflection):

σt (A) = A σt (A) ≡ 1itA1−it

j (A) = A′ j (A) ≡ JAJ. (18)

This basic theorem was stated and proved by Tomita with significant improvements due to
Takesaki [14]. In the context of thermal quantum physics it received an important independent
contribution in the form of the KMS condition from Haag Hugenholz and Winnink (HHW);
whereas Kubo, Martin and Schwinger only used this analytic condition in order to avoid the
calculation of traces, HHW elevates this property to one of the most important conceptual
tools related to the stability of states and to the second thermodynamical law [1]. Its relevance
for localization in QFT was first seen in full generality by Bisognano and Wichmann [17]
and the thermal aspects of (wedge) localization (the Hawking–Unruh connection) were first
stressed by Sewell [9]. Although we explained the construction of free nets only for bosons,
the formalism adapts easily to fermions. Fermions are pre-empted in the modular localization
of the Wigner theory by the appearance of a mismatch between the geometrical opposite of
HR(W) obtained by a 180◦ rotation, and its symplectic or real orthogonal complement. This
leads to a modification of the Tomita involution in the form of an additional twist which can be
shown to pre-empt the Fermi-statistics already on the one-particle level. Our inverse use of the
Bisognano–Wichmann idea for the purpose of direct net construction which we exemplified
for free theories in arbitrary space-time dimensions can be generalized to interacting theories

† A construction of the free net without using modular localization methods can be found in [16]. It is, however, the
modular method which extends to the interacting case.
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with the mathematical control being restricted presently tod = 1 + 1. Some of these results
will be presented in the last section.

Already in the very early development of algebraic QFT [15] the nature of the single local
von Neumann algebras became an interesting issue. Although it was fairly easy (and expected)
to see that i.e. wedge- or double-cone-localized algebras are von Neumann factors (in analogy
to the tensor product factorization of standard QT under formation of subsystems, it took the
ingenuity of Araki to realize that these factors were of type III (more precisely hyperfinite type
III 1 as we know nowadays, thanks to the profound contributions of Connes and Haagerup), at
that time still an exotic mathematical structure. Hyperfiniteness was expected from a physical
point of view, since approximatability as limits of finite systems (matrix algebras) harmonizes
very well with the idea of thermodynamic + scaling limits of lattice approximations. A surprise
was the type III1 nature which, as already mentioned, implies the absence of pure states (in fact
all projectors are Murray von Neumann equivalent to the identity operator) on such algebras;
this property in some way anticipated the thermal aspect (Hawking–Unruh) of localization.
Overlooking this fact which makes local algebras significantly different from algebraic aspects
of QM, it is easy to make conceptual mistakes which could, e.g., suggest an apparent breakdown
of causal propagation. For the discussion of such a kind of error and its correction see [18], as
already mentioned in the introduction. If one simply grafts concepts of QM onto the causality
structure of LQP (e.g. quantum mechanical tunnelling, structure of states) without deriving
them in LQP, one runs the risk of wrong conclusions about, e.g., the possibility of superluminal
velocities.

Let me, at the end of this section mention two more structural properties, intimately
linked to causality, which distinguish LQP rather sharply from QM. One is the Reeh–Schlieder
property:

P(O)� = H cyclicity of �

A ∈ P(O) A� = 0H⇒ A = 0 i.e. � separating
(19)

which either holds for the polynomial algebras of fields or for operator algebrasA(O).The first
property, namely the denseness of states created from the vacuum by operators from arbitrarily
small localization regions (a state describing a particle behind the moon† and an antiparticle
on the earth can be approximated inside a laboratory of arbitrary small size and duration) is
totally unexpected from the global viewpoint of general QT. In the algebraicA(O) formulation
this can be shown to be dual to the second one (in the sense of passing to the commutant), in
which case the cyclicity passes to the separating property of� with respect toA(O′).

Of course the claim that somebody causally separated from us may provide us with a
dense set of states is somewhat unusual if one thinks of the factorization properties of ordinary
Schr̈odinger-QT. The large enough commutant required by the latter property is guaranteed by
causality (the existence of a nontrivialO′) and shows that causality is again responsible for the
unexpected property. If the naive interpretation of cyclicity/separability in the Reeh–Schlieder
theorem leaves us with a feeling of science fiction (and also has attracted a lot of attention in
philosophical quarters), the challenge for a theoretical physicist is to find an argument why, for
all practical purposes, the situation nevertheless remains similar to QM. This amounts to the
fruitful question: which among the dense set of localized states can be really produced with a
controllable expenditure (of energy)? In QM the asking of this question is not necessary, since
the localization at a given time via support properties of wavefunctions leads to a tensor product
factorization of inside/outside so that the inside state vectors are automatically never dense in

† This weird aspect should not be held against QFT but rather be taken as indicating that localization by a piece of
hardware in a laboratory is also limited by an arbitrary large but finite energy, i.e. is a ‘phase space localization’ (see
the subsequent discussion). In QM one obtains genuine localized subspaces without energy limitations.
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the whole space. Later we will see that most of the very important physical and geometrical
informations are encoded into features of dense domains, in fact the aforementioned modular
theory explains such relations. For the case at hand the reconciliation of the paradoxical aspect
of the Reeh–Schlieder theorem with common sense has led to the discovery of the physical
relevance oflocalization with respect to phase space in LQP, i.e. the understanding of thesize
of degrees of freedomin the set:

PEA(O)� is compact

e−βHA(O)� is nuclear H =
∫
E dPE.

(20)

The first property was introduced long ago by Haag and Swieca [1] whereas the second
statement (and similar nuclearity statements involving modular operators of local regions
instead of the global Hamiltonian) which is more informative and easier to use, is a later result
of Buchholz and Wichmann [19]. It should be emphasized that the LQP degrees of freedom
counting of Haag–Swieca, which gives an infinte but still compact set of localized states is
different from the finiteness of degrees of freedom per phase space volume in QM, a fact often
overlooked in the present day’s string theoretic degree of freedom counting. The difference to
the case of QM is diminished if one uses, instead of a strict energy cutoff, a Gibbs damping
factor e−βH as above. In this case the mapA(O)→ e−βHA(O)� is ‘nuclear’ if the degrees
of freedom are not too accumulative (which then would cause the existence of a maximal
Hagedorn temperature). The nuclearity assures that a QFT, which was given in terms of its
vacuum representation, also exists in a thermal state. An associated nuclearity index turns out
to be the counterpart of the quantum mechanical Gibbs partition function [1] and behaves in
an entirely analogous way.

The peculiarities of the above Haag–Swieca degrees of freedom counting are very much
related to one of the oldest ‘exotic’ and at the same time characteristic aspects of QFT, namely
vacuum polarization. As discovered by Heisenberg, the partial charge:

QV =
∫
V

j0(x) d3x = ∞ (21)

diverges as a result of uncontrolled vacuum fluctuations near the boundary. For the free-field
current it is easy to see that a better definition involving test functions, which takes into account
the fact that the current is a four-dimensional operator-valued distribution and has no restriction
to equal times, leads to a finite expression. The algebraic counterpart is the so-called ‘split
property’, namely the statement [1] that if one leaves between say the double-cone (the inside
of a ‘relativistic box’) observable algebraA(O) and its causal disjoint (its relativistic outside)
A(O′) a ‘collar’ O1 ∩O, i.e.

A(O) ⊂ A(O1) O � O1 properly (22)

then it is possible to construct in a canonical way a typeI tensor factorN which extends in a
‘fuzzy’ manner into the collarA(O)′∩A(O1), i.e.A(O) ⊂ N ⊂ A(O1). With respect toN the
vacuum state factorizes, i.e. as in QM there are no vacuum fluctuations for the ‘smoothened’
operators inN . The algebraic analogue of Heisenberg’s smoothening of the boundary is the
construction of a factorization of the vacuum with respect to a suitably constructed type-I
factor algebra which uses the collar extension ofA(O). It turns out that there is a canonical,
mathematically distinguished factorization, which lends itself to define a natural ‘localizing
map’8 which gives valuable insight into an intrinsic LQP version of Noether’s theorem [1],
i.e. one which does not rely on any parallelism to classical structures, as is the case with
quantization. It is this ‘split inclusion’ which allows us to bring back the familiar structure of
QM since type-I factors allow for pure states, tensor product factorization, entanglement and
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all the other properties at the heart of quantum theory and the measurement process. However,
despite this partial return to structures known from QT, the vacuum retains its thermal properties
even with respect toN .

There are also interesting ‘folklore theorems’ i.e. statements which are mostly taken for
granted, but for which yet no rigorous argument exists (but also no counter-example). One is
the statement of ‘nuclear democracy’. In the context of LQP it states that an operator from a
(without loss of generality) double-cone algebraA ∈ A(O) or a point-like field couples to all
states to which the superselection rules allow a nonvanishing matrix element. In particular we
expect:

〈ϕin|A|ψin〉 6= 0 (23)

if the (say incoming) multiparticle state vectorϕin lies in the same charge superselection
sector asA|ψin〉, i.e. ‘everything communicates with everything’ as long as the charges
match†. A special case is the phenomenon of vacuum or better one-particle polarization
through interaction i.e. the idea that there may be no interacting local operatorA ∈ A(O) at
all such thatA� is in the one-particle space without additional pp̄ contributions. In order to
suppress this p̄p polarization cloud in state vectors of interacting theories, one has to allow at
least a semi-infinite localization region as the wedge region. For any compact region, or even
for those noncompact regions which are a tiny bit smaller than wedges, the infinite particle
clouds and the field point of view take over. The polarization cloud content of a state vector
A� with A ∈ A(O) is intimately related to the modular objects of(A(O),�). If one could
back up these expectations (based on model observations) by rigorous theorems, one would
have achieved an intrinsic understanding of interactions. Section 5 gives a brief account on
what is presently known about the modular construction of interacting nets.

3. Renormalized perturbation, problems withs > 1

Following Tomonaga, Feynman, Schwinger and the other pioneers of perturbative
renormalization, interactions are traditionally introduced through one of the various forms
of quantization (canonical, path integral, etc).

The method which brings out the pivotal role of causality in the most explicit way is,
however, the so-called ‘causal perturbation method’ which goes back to Stückelberg and
Bogoliubov [20] which was formulated as a finite iteration method within the principles of
LQP without reference to quantization by Epstein and Glaser [21]. Some refinements of that
method, notably related to curved space-time and gauge theories, have been recently added to
by [22,23]. Also Weinberg’s more formal derivation of Feynman rules for arbitrary spin [12]
is somewhat in the spirit of causal perturbations.

It is a conceptual weakness of any quantization approach that contrary to QM, where this
can be given a rigorous meaning, quantization in field theory remains more on the intuitive
artistic side. Only for a so-called super-renormalizable interaction is the assumed canonical
or functional Feynman–Kac quantization structure also reflected in the renormalized result;
in all other cases it only serves as a vehicle which activates physicists thought and does not
survive the renormalization procedure: i.e. with the mentioned exception no renormalized
result fulfils canonical commutation relations or functional integral representations, rather
the only surviving structure is causality/locality. This artistic rather than mathematical aspect
pervades the standard textbook formulation of QFT. Such a state of affairs is acceptable, as long
as one remains aware that (what I summarily call) the Lagrangian quantization is basically an

† This forces the substitution of the QM hierarchical concept of bound state particles in favour of charge fusion in
LQP, which in turn means ‘nuclear democracy’ between particles.
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efficient chain of formal manipulations and tricks which lead from slightly wrong assumptions
after some repair to the correct perturbative results. Whereas the canonical structure and the
functional integral representation cannot be upheld, the physical causality properties do survive
the necessary repair procedure, better known under the name of renormalization.

In order to rescue the canonical or functional structures at any cost, physicists sometimes
resort to imagining the existence of physical cutoffs or regulators and use the euphemism
‘cutoff canonical variables or cutoff functional representations’ without confronting those
conceptual problems of noncausal/nonlocal theories mentioned in the introduction. In this
way of thinking, the infinities of the unrenormalized theory relative to the renormalized, are
sometimes attributed more physical significance than just indicating the necessity of repairing
a slightly incorrect classical starting point (the classical Poincaré–Lorentz particle models
within a classical field theory, instead of the Wigner-particle picture), which would be avoided
in the causal perturbative approach.

To be fair, these conceptual drawbacks of the quantization artistry are partially offset by the
efficiency of renormalizing away infinities through Feynman rules. Even if, e.g., Schwinger’s
finite-split-point method for the nonlinear terms in field equations may be conceptually cleaner,
because one never meets a manifest infinity (as long as one does not interchange short distance
limits with the other operations), the method is harder to systematize and practically less
efficient compared with Feynman’s method of confronting infinities or ad hoc cutoffs.

Different from the quantization + repair of infinities, LQP only uses those physical
assumptions which are also genuinely reflected in the results (causality, spectral properties,
modular structure of local algebras etc). The principles are the same principles as standard
QFT but it does so in a more conscientious way. In such an approach the short-distance
properties of individual fields are, apart from perturbation theory (infinitesimal deformations
around free fields), less tightly connected with the existence of the model. We will come back
to this important point in the nonperturbative section 5. In the following we will illustrate
the strength of the LQP point of view in perturbation theory. The renormalized results are,
of course, the same as in the functional approach, but the derivation and the guiding physical
ideas differ in an interesting way.

In causal perturbation theory, which may be considered as a particular form of perturbative
LQP, the interaction is implemented by locally coupling the free fields (any choice possible,
ψ does not have to be Lagrangian!) by anL-invariant sum over Wick monomialsWi(x) and
one defines the following formal transition operator in Fock space†:

S(g, h) = T ei
∫ {g(x)W(x)+h(x)ψ(x)} d4x

C̃ ⊂ suppg ⊂ C
gi = const inC̃

(24)

whereW(x) = ∑
giWi(x) andC, C̃ are large double-cone regions. In the following we

specialize to one field and one coupling for simplicity of notation (the notation for the general
case with several fields and monomials we leave to the reader). Already without the time-
orderingT , the operator exponential is a mathematically delicate object since the smeared
Wick-powers beyond the second are not essentially selfadjoint on their natural domains. With
the time ordering it is more serious: apart from certainW with low operator dimensions (a
situation which cannot occur ind = 1 + 3 dimensions), there is no operator functionalS(g) in
Fock space for which a mathematical control has been achieved (no solution of the ‘Bogoliubov

† There is no compelling physical reason besides the historical success in QED and the analogy with QM why outside
of deformation of free fields the introduction of interactions should follow this pattern. The existence of perturbation
theory in the sense of a deformation theory has in general no bearing on the existence of an associated nonpertubative
version.
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axiomatics’ ind = 1 + 3). Causal perturbation theory does not attempt to make sense ofS(g)

but only of itsnth order power series term ing. Therefore one proceeds along the following
two lines:

• Extraction of general causality properties forS(g) and related operators (the ‘Bogoliubov
axiomatics’).The basic causality in the time-ordered formalism is:

T (ψ(x1) . . . ψ(xn)) = T (ψ(x1)) . . . ψ(xk)) · T (ψ(xk+1) . . . ψ(xn))

if xj /∈ xi + V̄+ i = 1, . . . , k j = k + 1, . . . , n.
(25)

For the purpose of (formally) extracting a causal net it is helpful to reformulate this property
in terms of another relative transition operator:

V (g, h) ≡ S(g, h = 0)−1S(g, h)

causality :V (g, h1 + h2) = V (g, h1)V (g, h2)

if supph1 /∈ supph2 + V̄+.

(26)

With the local algebras being now defined as (the notation alg includes the von Neumann
closure):

Ag(O) ≡ alg{V (g, h), supph ⊂ O}. (27)

In fact, a change of the coupling strengthg outsideC (see (24)) does not change the
netAg(O) for O inside C̃, except for a common unitary (the nets are isomorphic, i.e.
considered to be identical):

V (g + δg, h) = AdU(g, δg)V (g, h)
suppδg outside C̃.

(28)

With this formula, the transition from the BPS–EG to the LQP net formalism has been
achieved on the level of perturbation theory [23]. The algebraic content has been
constructed in an auxiliary Fock space whose particle content is not necessarily identical
with the physical particle content, and the adiabatic limit of the EG approach (which would
have forced the coalescence of the two) has been avoided.
• Perturbation as a deformation of free fields.Having no control over the objects in the

Bogoliubov axiomatics, we satisfy ourselves with existence and properties of causal power
series forS(g) := S(g, h)|h=0:

S(g) =
∑ in

n!

∫
g(x1) . . . g(xn)TW(x1) . . .W(xn) (29)

which allows an iterative construction innwithW serving as the input. The main inductive
step is the construction of the total diagonal part inn + 1 order, assuming that thenth
order time-ordered product has been fully (i.e. as an operator-valued distribution on all
Schwarz test functions) constructed. Causality defines then + 1 order object on all test
functions which vanish on a totally coalescent diagonal point [23]. The (Hahn–Banach)
extension problem allows for totally locally supported terms witha priori undetermined
coefficient. These local terms are often (as ‘counter-terms’) lumped together with the
n = 1 term. Mere perturbative locality and unitarity requirements do not fix this ambiguity
(i.e. perturbatively one always operators in Hilbert space†). Rather, the introduction of a
suitable degree function allows us to control these ambiguities in terms of a finite number
of physical parameters, at least in the case of so-called renormalizable interactionsW with
dimW 6 4= d.Perturbation is a deformation around known theories which in the present

† This is not necessarily so in other (e.g. functional integral) formulations, where the connection with operator aspects
of QT may get lost (even the introduction of cutoffs or regularizations is no assurance for maintaining it).
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case are free fields. It only explores an infinitesimal neighbourhood around free fields
and is not suited for deciding questions about mathematical existence. In fact, beyond
deformation theory it is not physically compelling to implement the idea of interactions
by coupling free fields toW in Fock space. Rather this is the perturbative way of
introducing interactions and not a general consequence of the general framework. Indeed,
the nonperturbative attempts based on modular theory use a different implementation
of ‘interaction’, as will be shown later. The causal perturbation theory leads to the same
renormalized correlation functions as, e.g., the one based on functional integrals. However,
as shown in the following, the physical concepts and calculational rules are somewhat
different. In particular, all differential identities (as equations of motion) can be used
freely in the causal formulation, whereas this is not the case in the off-shell functional
(Euclidean) approach. For the (m, s) free fields one may take any of the many possibilities
in (8) independent of whether the field results from a classical Lagrangian (in which case
its covariant transformation follows from the Euler equation of motions) or not. But
since for given (m, s) there always exists a Lagrangian ‘field coordinatization’ in terms
of which one may rewrite the given interactionW , one also does not lose anything if one
starts from Lagrangians. The main benefit of the causal perturbation viewpoint lies in
the fact that one liberates oneself from the moral obligation to repair something which
came by quantization from classical theory. Instead the main question is how, by using
the terms in the formal power series expansion, can one obtain something which is well
defined in Fockspace, fulfils causality and unitarity requirements, and has the right to be
called a time-ordered product of (the well-defined)W? This can be made more precise
by saying it should coalesce with the naive time-ordered product ofW if one smears
them with test functions which have noncoalescent supports. So renormalization in the
causal approach simply amounts to an (Hahn–Banach-like) extension of operator-valued
distributions from the subspace of test functions with this restriction to all test functions.
In addition one has to reparametrize the theory in terms of physical masses, charges and
couplings, and use a field normalization which harmonizes with the asymptotic scattering
interpretation or with the preservation of all selfinteractions in the adiabatic limit. Since
there was no classical (bare) particle picture from quantization in this approach, there is
also nothing to be repaired by dumping infinities. Hence the causal approach is finite in the
distribution-theoretical sense, as is the Schwinger point-split methods, albeit much easier
to handle than the latter. For dimW 6 4 the procedure works in terms of obtaining a
deformation theory with finitely many masses, charges and coupling parameters. To prove
that this extension idea works in an inductive manner is not easy and the explanation of
the necessary technical steps would throw this conceptually oriented presentation out of
balance.

The above formal counting argument, if taken seriously as a definition of renormalizability,
would rule out all massive higher spins > 1 fields as candidates to be used for interaction
polynomialsW since there are no intertwiners from the Wigner particle to covariant local
representationsψ with dimψ < 2. For example, a massives = 1 object in the vectormeson
description has operator dimension dimAµ = 2 (the use of different intertwiners does
not improve this increase of quantum versus classical dimension), so that any trilinear
interaction involvingAµ (and lower spin) has dimW > 5. Fortunately, this barrier against
renormalizability created by Wick polynomials of free fields involvings > 1 has an interesting
loophole, namely it can be undermined by a ‘cohomological trick’ which consists of the
following observation. One is asked to find a cohomological representation of, e.g., the
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(m, s = 1) physical Wigner space:

HWigner = kers

ims
s2 = 0. (30)

Here s acts onHext and the Poincaré group is still covariantly represented onHext (the
pseudo-unitary nature of the boost representors however turns out to be unavoidable). The
transversality of the covariant inner product of the vectorpotential (which was the origin of
dimAµ = 2 instead of the classical dimension one) only emerges in the cohomological descent
from Hext to HWigner . The answer to the question why acohomologicalextension and not
another one (e.g. Gupta–Bleuler) which reduces the dimension to the classical value, lies in the
hope that cohomological structures tend to be more stable under perturbative deformations.
In other words, one expects a better chance to return to the physical space at the end of
the perturbative calculations, in fact one expects the physical space to be the cohomology
space. The simplest cohomological extension of the Wigner wavefunction space which
allows a nilpotent operation†s with s2 = 0, such that the physical transversality condition
pµAµ(p) = 0 follows from the application ofs,needs, besides two scalar ghosts wavefunctions
ω andω̄, another scalar ghost fieldϕ (often called the Stückelberg field):

(sAµ)(p) = pµω(p)
(sω)(p) = 0

(sω̄)(p) = pµAµ(p)− imϕ(p)

(sϕ)(p) = −imω(p).

(31)

One immediately realizes thats2 = 0 and thats(·) = 0 enforces the vanishing ofω and relatesϕ
topµAµ.At this point there is no grading in the formalism, i.e. theω andϕ are simply ungraded
wavefunctions. However, the functorial transition from Wigner theory to QFT in Fock space
requires the introduction of a grading with degω = 1, degω̄ = −1, and degAµ = 0, with
s transferring degree 1. The reason is that only with this grading assignment [27] does thes

allow a natural tensor extension to multiparticle spaces with stable nilpotency,

s(a ⊗ b) = sa ⊗ b + (−1)degaa ⊗ sb (32)

which insures the commutativity of the Wigner/Fock cohomological ascent and descent:

Hext↓
→ Hext↓

HWig → H
(33)

where the calligraphic notation stands for the bosonic Fock space and its graded extension.
This prompts us to view the Fock space versionδ of s as the image of a (pseudo)Weyl

functor0 asδ = 0(s) and to write theδ in the spirit of a formal Noether symmetry chargeQ:

Q =
∫
(∂µA

µ(x) +maφ(x))
↔
∂0 ω(x) d3x = Q†. (34)

The experienced reader will easily recognize that we have arrived at a special version of the
BRS formalism [24] which which remains unchanged by interactions [25].

The Fock space version ofs yields an objectδ of a differential algebra withδ2 = 0 which
changes theZ-grading by one unit and acts on vectors and operators inHext similar to a global
Noether charge:

δA = i[Q,A] = δA ≡ i{QA− (−1)degAAQ}
Q in Hext Q2 = 0.

(35)

† I apologise for using the letters, in the following, for a special kind of cohomological (BRS) operation, after it
served for the notation of spin as well as the (pre)Tomita operator; historical fidelity is sometimes a burden. The same
fate will happen toδ later in this section.
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Note that the nilpotency together with the formal hermiticityQ = Q† prevents a positive inner
product in∗-representation of such algebras. It is customary (and helpful for mathematical
control) to work with two inner products, one positive definite in order to stay with the
mathematics of operators in Hilbert spaces, and a Krein operatorη which is used to define
another indefinite one as well as (pseudo)hermiticity. For many operators the two notions
coalesce (they commute withQ), e.g. for all Poicaŕe generators except Lorentz boosts. In
order to introduce interactions, one now uses the extended formalism in the same way as at
the beginning of this section. For an interaction between vectormesons (for simplicity without
additional matter) one may start with a trilinear expression (fabc are independent couplings)

WA = fabc : AaµAbν∂
νAµc (36)

which in the extended space has dimW = 4. The important question to be answered now is:
what is the criterion which selects the physical operators inH in every order of perturbation
theory? Obviously they should commute withQ or rather the physical projection of the
commutator should vanish. In addition to finding local operators with this property, one is
interested in theS-matrix for the scattering of the massive particles which is the adiabatic limit
of S(g) for g(x) ≡ const= g. A sufficient condition on the operator-valued functionalS(g)

which guarantees this property is thatS(g) commutes withQ up to surface terms ing which
are localized in the collar (24). For theW and their time-ordered products which appear as
integrands in these relations this means the validity of the following divergence equations:

[Q,W(x)] = i∂xµW
µ

1 (x)

[Q,T (W(x1) . . .W(xn))] = i
n∑
l=1

∂xlµ T (W(x1) . . .W
µ

1 (xl) . . .W(xn)).
(37)

TheW1 must be constructed in the process of checking these relations. These equations
were introduced by [26] and called ‘operator gauge invariance’. Although we will use these
divergence relations, we will not follow this terminology because it creates the erroneous
impression that a QFT involving massive vectormesons has to rely on a gauge principle in
addition to renormalizability and the cohomological return to physics. It turns out that in
contrast to what happens with low spins < 1, the renormalization + cohomological descent
requirement (the latter having no counterpart for low spin) are, in fact, so strongly restrictive,
that not only the masses are forced to be equal and the couplings in (36) have to fulfil the
Jacobi identity known from the Lie algebra structure, but all other couplings, including
the quadrilinear couplings induced from the divergence equations, are such that as modulo
renormalization terms they follow the pattern of classical gauge group theory, even though the
group theory is not required by physical symmetries. However, the relation to the differential-
geometric gauge structure is the opposite from that in the standard literature. Whereas classical
gauge principles, which select among the many polynomial couplings (increasing number
with increasing spin) involving vector fields those which nature (classical e.m.) prefers,
usually enter QFT via quantization, the LQP approach produces a unique interaction between
massive vectormesons in the way sketched before. In particular one obtains the inverse
of the ’t Hooft renormalization statement namely the zero mass(semi)classical limit of the
unique perturbatively renormalizable massive vectormeson theory is a classical gauge theory.
Without going into more details [28] we will collect the important results of the above causal
perturbation approach.

• The masses of the vectormesons are equal and the coupling among vectormesons and
ghosts is determined by one coupling strength. The theory would show inconsistencies in
higher than first order without the introduction of additionalphysicaldegrees of freedom.
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The minimal (and perhaps only) possibility are (Higgs) scalars but without the usual
vacuum expectations which are associated with ‘Higgs’ mechanism’.
• As expected from Schwinger’s screening ideas [29], the physicalFµν-fields (those which

commute withQ) have vanishing Maxwell charge and this would continue to be true in
the presence of additional spinor matter.
• The uniqueness of the renormalizable spin= 1 part follows already from the specification

of the physical particle content [28]; only the coupling betweens < 1 matter introduces
the usual additional parameters.

Comments. The results show that although the gauge point of view which requires the
Higgs–Kibble mechanism (‘fattening of photons by eating Goldstone bosons’) is not incorrect,
there is nothing physically intrinsic about it; it is a mnemotechnical device which allows a
differential-geometrically inclined physicist rapid access to the perturbative results. It has the
disadvantage that the necessity of the presence of additional physical degrees of freedom for
reasons of consistency within renormalized perturbation theory (the Higgs degree of freedom)
is not as convincing as in the present approach, in fact one usually puts the Higgs fields
into the Lagrangian from the beginning. The present method leads to the same physical
correlation functions but with a slightly different conceptual ring from the ‘Mexican hat’
arguments. The ghosts are clearly more recognizable as kinematical (via an extension of
HWigner ) auxiliary unphysical objects whereas the dynamical presence of additional physical
degrees of freedom (the alias Higgs field, but without vacuum condensates) for matters of
perturbative consistency becomes more manifest and the observable particle content receives
greater emphasis. Classical differential-geometric concepts as the gauge idea are put into
their proper place: they appear via Bohr’s correspondence principle on the classical side as a
result of the uniqueness of the implementation of perturbative renormalizability. Since gauge
theories play a very prominent role, this point of view is not without interest. In fact it is
close to the original viewpoint about massive vectormesons by Sakurai. The idea of the BRS
like cohomological extension certainly takes care of those cases also covered by the gauge
quantization and the Higgs–Kibble mechanism, but it may have a larger range of applicability
to spin beyond one. The present method also suggests to consider the conceptually simpler
(validity of scattering theory) massive case and approach the zero-mass situation with its
infrared problems as a limiting case, i.e. the inverse of the Higgs approach. Since one knows
that the physical charge-carrying fields in Maxwell-like theories have a noncompact spatial
extension [13] (space-like cones with a semi-infinite string-like core), the physical massive
fields cannot converge without the necessity of a prior modification. The attractive feature
of such an idea is that such a modification becomes related to the decoupling of the Higgs
particle.

There is a special feature of Abelian massives = 1 theories with additional spinor matter
which is absent in the non-Abelian case. Namely, in addition to the massive theory constructed
in the analogous way with all matter fields being renormalizable, there also exists ‘massive
QED’ for which theψ-field cannot be simultaneously renormalizable (polynomially bounded
correlation function with a dominating degree independent on perturbative order) and physical,
i.e. commuting withQ. This massive QED has no Higgs degree of freedom which is apparantly
necessary in order to have both properties.

A direct causal perturbative approach tos = 1 massless theories was recently formulated
by Duetsch and Fredenhagen [22]. The necessity to avoid the (physically controversial)
adiabatic limit requires the use of the full nonlinear BRS structure and to confront a situation
in which (unlike as in the above case with bilinearQ) the position of the physical cohomology
space keeps changing with the perturbative order. Lacking a fixed physical reference space (e.g.
an incoming scattering space), the physical space only appears at the end as a representation
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space of a perturbative observable∗-algebra. This construction was carried out in QED, but
there is little doubt that with more work it also works for the non-Abelian case.

We do not, of course, claim that the BRS-like cohomological construction for the
preservation of renormalizability in the face of higher spin advocated in these notes is less
mysterious then the quantization gauge principle. It remains essentially magical why and how
the cohomological trick produces local physical fields which at the end do not seem to be
different from those obtained with the standard causal perturbation method, except that the
latter cannot reconcile spin= 1 with renormalizability. However, despite its present magical
touch, it is a bit closer to the spirit of LQP and perhaps less so to quantization and differential
geometry. It keeps the attention on the unsolved infrared problems† and exposes the weird
role of ghosts analogous to chemical catalyzers: they are introduced into the original physical
problem in order to improve theW -powercounting and they are removed at the end without
any visible trace [28].

This situation cries out for a deeper understanding without ghosts. From the more than
30-year struggle of physicists with this conceptual problem one should conclude that if there
exists a formulation without ghosts in intermediate steps, then it cannot be anywhere near
to the present formulation. In fact, the naturally ghost-free object is theS-matrix S which
in contradistinction to the above transition operator of the causal approachS(g) is on-shell.
If one could find an iteration scheme directly forS which in intermediate steps avoids off-
shell extrapolations, then this would be automatically ghost-free in every order. It would be a
multivariable dispersion theoretical approach based on unitarity and crossing symmetry. The
lowest order input consists of the on-shell tree diagrams (different from the off-shellW ). Such
an approach has only been carried out ford = 1 + 1 factorizingS-matrices where there exists
a partial classification of admissibleS-matrices even without the use of perturbation theory:
the famous bootstrap-formfactor program of factorizable models. Outside of such restrictive
situations a perturbative on-shell approach forS does not yet exist. The idea would be to use
the perturbative ghost-freeS-matrix in order to construct polarization-free generators of wedge
algebras (PFGs). These are operators which are similar to free fields in that their one-time
application onto the vacuum is a one-particle vector without admixtures of particle/antiparticle
polarization clouds (see the last section). In the mentioned special case of factorizable models
they are uniquely determined (see the last section) by theS-matrix via modular theory. Having
generated the wedge algebras from theS-matrix, one can than use modular ideas to define and
investigate a chiral conformal light-ray theory which is a canonical way associated with the
wedge algebra. Although many of these statements sound futuristic, I think that this is the only
way to avoid ghosts. One has to bypass the use of a Wick basis for the description of physical
ghost-free operators as linear combinations of composite fields. Such a basis is not intrinsic
and inevitably brings in the necessity of ghost field contributions. The approach dealing
with algebras is the only basis-free intrinsic approach to the problem. The difficulty is the
conversion of these rather abstract sounding ideas into a concrete computational scheme. The
perturbative version of that only very incompletely understood on-shell scheme for low-spin
renormalizable models which did not need ghosts in the old treatment should just reproduce the
known renormalized results. Although our main present motivation for going to such extremes
was to have a ghost-free renormalizable formalism for higher spins > 1, the interest in it would
by far exceed the present motivation. The idea of circumvention of the naive powercounting on
W in terms of physical fields which rules outs > 1 by a radical reformulation of pertubation
theory which directly leads to finite parametic physical theories fors > 1 is worth any effort

† From a physical point of view the aesthetic lure of differential geometry of fibre bundles in gauge theories is a bit
dangerous, because it takes one away from the harder but physically more important infrared phenomena of the LQP
of s = 1.
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since it may turn out to be the tip of an iceberg. For further remarks we refer to [28].
We will return to this issue of generation of wedge algebras by modular methods in a more

general context in the last section.

4. Modular origin of geometric and hidden symmetries

From the wedge localization in section 2 we have seen that the modular objects associated to
a standard (cyclic and separating vector�) pair (A(O),�) has, under certain circumstances,
a geometrical significance, e.g. for the wedge in a massive (Poincaré-invariant) theory, or the
double cone in a massless (conformally invariant) theory. This suggests the question whether
all space-time symmetries (diffeomorphisms) can be viewed as having a modular algebraic
origin, i.e. if they can be thought of as originating from the relative positions of individual
algebras in a net.This would elevate space-time from its role of merely indexing individual
algebras in the net, to a structure which is on the one hand more intimately related with
the physical aspects of LQP, and on the other hand presents already structural properties
whose understanding seems to be a prerequisite for the formulation of the elusive ‘quantum
gravity’. It turns out that in chiral conformal theories the Moebius group, together with the
net on which it acts, can be constructed from only two properly positioned algebras which
give rise to two ‘half-sided modular inclusions’ (see below). In fact, mathematically, the
world of chiral conformal nets is equivalent with the classification of all ‘standard half-sided
modular inclusions’. In this conformal setting the Haag duality is automatic and there is no
spontaneous symmetry breaking. The analogue in the higher-dimensional case is to assume
wedge duality (always achievable, as previously mentioned, by maximization) and to prove
the equality of the modular group with the Lorentz boost without assuming (as Bisognano and
Wichmann did) that the algebras are generated by local fields. Presently this cannot be done
without making additional assumptions, i.e. assumptions which cannot be expressed in terms
of modular positions only, but are suggested by space-time geometry [55]. Amazingly one
again succeeds in building up the whole Poincaré group as well as the net from a small finite
number of algebras in appropriate modular positions (using modular inclusions and modular
intersections).

Since modular groups exist for each space-time region one may ask about their physical
interpretation. Let us start by posing the opposite question in a context where there are
geometric candidates without obvious modular origin. In chiral conformal theories one has a
rich supply of diffeomorphisms of the circle which have been around since the beginning of
the 1970s. The way these mathematical structures were discovered by physicists is somewhat
bizarre and confusing. It is interesting to take a brief look at the history by permitting a short
interlude, before presenting our modular interpretation.

Apart from some early work of mathematicians (Gelfand, Fuchs) on diffeomorphisms
of S1 and their associated Witt algebra (infinitesimal diffeomorphisms without the central
extension), the first observation by a physicist of this Witt algebra structure was made in the
Veneziano dualS-matrix model by Virasoro [30]. At that time it was realized that the on-shell
dual S-matrix model allowed for a nice off-shell presentation in terms of a massless free-
field theory ind = 1 + 1. Parallel to this, but without any interrelation, there were detailed
field theoretic investigations of the representation of conformal generators in terms of the
energy momentum tensorT and their action e.g. on the Thirring fields [33] and the problem
(formulated in Lowenstein’s thesis and going back to Greenberg) of classifying so-called ‘Lie
fields’ [34], the predecessors of what in the rediscovered version 25 years later were called
W -fields. The next contribution came again from the dual model calculations and consisted in
the correct computation of the central term (for free massless fermions) which was previously
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overlooked [35]. My own contribution was the computation in 1973 of the general structure
of the T –T commutation relation in chiral conformal theories as a structural consequence
of translational covariance and causality which I presented together with other results at the
January 1974, V Brazilian Symposium in Rio de Janeiro [36]. Apart from not knowing
the aforementioned free-fermion results, my motivation was quite different and consisted in
the search for a nontrivial ‘Lie field’ of which the energy momentum tensor was the first
illustration†. In the same year the conformal block decomposition was discovered (called the
decomposition of local fields into nonlocal components) which solved the Einstein ‘causality
paradox in conformal quantum field theory’ by noticing [37] that local fields were irreducible
only with respect to a finite neighbourhood of the identiy but not with respect to the centre of the
covering ofSL(2, R)× SL(2, R). The illustration of this decomposition theory by nontrivial
models (minimal models) beyond exponential Bose fields had to wait another ten years [38].
By that time the increased knowledge by physicists about infinite-dimensional Lie algebras
(affine algebras, diffeomorphism algebras) was leaving its mark on low-dimensional QFT. This
also had, besides many gains, one disadvantage because the use of those infinite-dimensional
Lie algebras separated these low-dimensional QFT sharply from a higher-dimensional standard
type of QFT to which such structures are not available. The modular point of view which I will
present in the following admits a higher-dimensional analogue and incorporates conformal and
factorizing theories back into the framework of general QFT.

Returning to the modular issue, let us look at a special subgroup whose Lie algebra is
isomorphic to that of the Moebius group. Its action on the circle is

z→
√
a + bz2

c + dz2

(
a b

c d

)
∈ SU(1, 1) (38)

where the cuts connecting both poles and zeros are chosen outside the unit circle. In fact this
defines a two-fold covering of the Moebius group. Given an interval, its square root (inverse
image ofz→ z2) consists of two disjoint intervals which are separately left invariant under the
above transformation group. The obvious conjecture is of course that (as for the case of a single
interval) the covering dilation subgroup is the modular group of the pair (A(I1∪I2),�). But this
cannot be, because this action restricted to one interval is the same as that of the dilation in the
Moebius group but this, according to a theorem by Takesaki [44] is not possible if the vacuum
state fulfils the Reeh–Schlieder property of being cyclic and separating for only one interval.
Since it never happens that two disjoint square-root intervals are contained in one interval of
another such pair, there will be no contradiction with the lack of the Reeh–Schlieder property
for one interval. A (quasifree) state on the Weyl algebra (which we take as an illustration of a
simple conformal model) which is invariant under the above covering transformation [32] is
easily found in terms its two-point function which belongs to the following scalar product:

〈f, g〉 =
∫

f (x)g(y)

[(x − y)(1 +xy) + iε]2
(1 +x2)(1 +y2) dx dy (39)

where we used the linear presentation instead of the circular one (SL(2, R) instead ofSU(1, 1)).
This is to be compared with the standard inner product belonging to the vacuum representation

〈f, g〉0 =
∫

f (x)g(y)

(x − y + i0)2
dx dy. (40)

† The reason why many field theoretical results on low-dimensional field theories were only published in conference
proceedings was sociological and not scientific. Low-dimensional field theory for the benefit of higher-dimensional
S-matrix models was considered of greater physical relevance than its use as a theoretical laboratory for the test of
general ideas on interactions, a point of view which was later uphold by string theorists.



5960 B Schroer

One easily checks that this inner product belongs to the same symplectic form as the standard
one, namely

ω(f, g) = Im 〈f, g〉 =
∫
fg′dx = ω0(f, g) = Im 〈f, g〉0. (41)

As for the standard case the criterion for a Fock representation is that the inner product can be
represented in terms ofω with the help of a complex structureI0, I 2

0 = −1, with

〈f, g〉0 = ω(I0f, g) = −ω(f, I0g)
(I0f )(x) ≡

∫ −1

(x − y + iε)
f (y) dy

(42)

the analogous statement holds for〈f, g〉 with I0 replaced byI

I = 0−1 ◦ I0 ◦ 0

(0f )(x) ≡
∫
f

(
x

2
+ sign(x)

√
1 +

(x
2

)2
)

〈0f, 0g〉0 = 〈f, g〉.

(43)

The changed inner product defines a changed quasifree state on the Weyl algebra. The proof
that the covering dilation

U(λ) = 0−1 ◦ V (λ) ◦ 0
(V (λ)f )(x) = f (λx) (44)

is indeed the modular group for the algebra of the disjoint intervals [−∞,−1] ∪ [0, 1] in this
quasifree state, we only have to check the appropriate KMS condition. From:

lim
θ↑2π
〈U(λ)f, g〉1 = lim

θ↑2π
〈V (λ) ◦ 0(f ), 0(g)〉 = 〈0(g), 0(f )〉 = 〈g, f 〉1 (45)

one sees that theU(λ) fulfils the KMS condition if bothf andg are from one of the two
intervals since0 transforms the space of [0, 1] localized functions into [−∞,−1] localized
ones and vice versa.

This situation is very interesting, since although the chiral diffeomorphisms allows no
geometric generalization to diffeomorphisms in higher dimensional LQP, the disconnected
(and multiply connected) algebras have modular groups which act in a nonpoint-like manner
inside these disconnected local regions†. This is what we mean by ‘hidden symmetries’. There
is another closely related aspect which strengthens the physical relevance of disconnected
regions. It was well known for some time [1] that such situations break Haag duality i.e.

A((I1 ∪ I2)′) ⊂ A(I1 ∪ I2)′

is a genuine inclusion if the netA has nontrivial superselection rules. For models resulting
from the maximal extension of the Abelian current algebra the mechanism which causes this
obstruction against Haag duality has been completely analysed in [46]. Very recently this has
been understood in complete generality (for rational theories, i.e. those with a finite number
of sectors) in [45] by using very powerful methods of subfactor theory. In the context of the
above use of ‘geometric states’, one would conjecture that their lack of cyclicity leads to a
Jones projector which contains the information about the additional superselection sectors, but
this remains to be seen.

In the following we will look at two more illustrations of modular constructions.

† Observable algebras in disconnected regions have also played a role as indicators of the presence of charge
sectors [31,43,46].
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As a reference wedge we may take the wedgeW(l1, l2) spanned by the light-like vectors
l1,2 = e± = (1, 0, 0,±1), in which case we callz, t the longitudinal andx, y the transversal
coordinates (the light-like characterization of wedges is convenient for the following). This
situation suggests to decompose the Poincaré group generators into longitudinal, transversal
and mixed generators

P± = 1√
2
(P0 ± Pz) M0z;M12, Pi;G(±)

i ≡
1√
2
(Mi0 ±Miz) i = 1, 2. (46)

The generatorsG(±)
i are precisely the ‘translational’ pieces of the Euclidean stability groups

E(±)(2) of the two light vectorse± which appeared in Wigner’s representation theory for
zero-mass particles. More recently, these ‘translations’ inside the homogenous Lorentz group
appeared in the structural analysis of ‘modular intersections’ of two wedges [39, 40]. Apart
from the absence of the positive spectrum condition, its role is analogous to that of the true
translationsP± with respect to half-sided ‘modular inclusions’ [40].

As one reads off from the commutation relations,Pi,G
(+)
i , P± have the interpretation of a

central extension of a transversal ‘Galilei group’† with the two ‘translations’G
(+)
i representing

the Galilei generators,P+ the central ‘mass’ andP− the ‘nonrelativistic Hamiltonian’. The
longitudinal boostM0z scales the Galilei generatorsG(+)

i and the ‘mass’P+. Geometrically
theG(+)

i change the standard wedge (it tilts the logitudinal plane) and the corresponding finite
transformations generate a family of wedges whose envelope is the half-spacex− > 0. The
Galilei group together with the boostM0z generate an eight-parametric subgroupG(+)(8) inside
the ten-parametric Poincaré group‡:

G(+)(8) : P±, M0z; M12, Pi; G(+)
i . (47)

The modular reflectionJ transforms this group into an isomorphicG(−)(8).
The Galilean group is usually introduced as a ‘contraction’ of the Poincaré group. But

as the present discussion, the wedge (or rather as in the following remarks, two wedges in
a special modular intersection position) shows, it also appears as a genuine subgroup of the
Poincaŕe group. The latter fact seems to be less known.

All observations have interesting generalizations to the conformal group in massless
theories in which case the associated natural space-time region is the double cone.

This subgroupG(+)(8) is intimately related to the notion of modular intersection see
[39, 40]. Let l1, l2 and l3 be three linear independent light-like vectors and consider two
wedgesW(l1, l2),W(l1, l3)with312 and313 the associated Lorentz boosts. As a result of this
commonl1 the algebrasN = A(W(l1, l2)),M = A(W(l1, l3)) have a modular intersection
with respect to the vector�. Then (N ∩M) ⊂M, �) is a so-called modular inclusion [40,41].
IdentifyingW(l1, l2)with the above standard wedge, we notice that the longitudinal generators
P±, M0z are related to the inclusion of the standard wedge algebra into the full algebraB(H),
whereas the Galilei generatorsG(+)

i are the ‘translational’ part of the stability group of the
common light vectorl1 (i.e. of the Wigner light-like little group).

To simplify the situation let us taked = 1 + 2 withG(4), in which case there is only one
Galilei generatorG. In addition to the ‘visible’ geometric subgroup of the Poincaré group, the
modular theory produces a ‘hidden’ symmetry transformationUN∩M,M(a) which belongs to

† G are only Galilean in the transverse sense; they tilt the wedge so that one of the light-like directions is maintained
but the longitudinal plane changes.
‡ The Galilean group is usually introduced as a ‘contraction’ of the Poincaré group. But as the present discussion
about the wedge (or rather the following remarks about two wedges in a special modular intersection position) shows,
it also appears as a genuine subgroup of the Poincaré group. The latter fact seems to be less known.
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a region which is an intersection of two wedges:

UN∩M,M(a) := exp

(
ia

2π
(ln1N∩M − ln1M)

)
(48)

is a unitary group with positive generator. Moreover one has:

UN_M,M(1− e−2πt ) = 1it
M1

−it
N_M (49)

UN∩M,M(e
−2πta) = 1it

MUN∩M,M(a)1
−it
M (50)

AdUN∩M,M(−1) (M) = N ∩M (51)

and

JMUN_M,M(a)JM = UN_M,M(−a). (52)

Similar results hold forN replacingM. Due to the intersection property we finally have the
commutation relation

[UN_M,M(a), UN_M,N (b)] = 0 (53)

which enables one to define the unitary group

UN_M(a) = UN_M,M(−a)UN_M,N (a). (54)

This latter group can be rewritten as

UN_M(1− e−2πt ) = 1it
M1

−it
N (55)

and thereby recognized to be in our physical application the one-parameter Galilean subgroup
G (47) in the above remarks.

Now we notice that fora < 0

AdUN_M,M(a)(M) = Ad1
−i( 1

2π ln−a)
M UN_M,M(−1)(M)

= Ad1
−i( 1

2π ln−a)
M (N ∩M). (56)

Because1it
M acts geometrically as Lorentz boosts, we have full knowledge of the geometrical

action ofUN_M,M(a) onM for a < 0. For a > 0 we notice

AdUN_M,M(1)(M) = AdUN_M,M(2)(M ∩N ) = Ad JMJN_M(M ∩N )
= Ad JM(M′ ∪N ′) (57)

and again, due to the geometrical action ofJM we have a geometrical action onM for a > 0.

AdUN∩M,M(a)(M)= Ad1
−i( 1

2π ln a)
M JM(M′ ∪N ′). (58)

From these observations and withUN∩M,M(1− e−2πt ) = 1it
M1

−it
M∩N we get fort < 0:

Ad1it
N∩M(M) = Ad1

(− i
2π ln(e−2πt−1))

M JM(M′ ∪N ′) (59)

and in the case oft > 0:

Ad1it
N∩M(M) = Ad1

(− i
2π ln(1−e−2πt ))

M (N ∩M). (60)

Similar results hold forN replacingM. With the same methods we get:

Ad1it
N∩M1

is
N (M) = Ad1it

N∩M1
is
N1
−is
M (M)

= Ad1it
N∩MUM∩N (e

−2πs − 1)(M) (61)

whereUN∩M is the one-parameter Lorentz subgroup (the Galilei subgroupG in (47) associated
with the modular intersection. This gives:

Ad1it
N∩M1

is
N(M) = AdUM∩N (e−2πt (e−2πs − 1))1it

N∩M(M)

= AdUM∩N (e−2πt (e−2πs − 1))1
− 1

2π ln(1−e−2πt )

M (M ∩N ) (62)
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if t > 0 and similar fort < 0.Therefore we get a geometrical action of1it
N∩M on Ad1is

N (M).

A look at the proof shows that the essential ingredients are the special commutation
relations. Due to

1it
M∩N = 1it

MUN∩M,M(1− e−2πt ) = 1it
MJMUN∩M,M(e

−2πt − 1)JM (63)

and the well established geometrical action of1it
M andJM, it is enough to consider the action

of UN∩M,M or similarlyUN∩M,N . For these groups we easily get

AdUN∩M,M(a)1
is
N1
−it
M (N ) = Ad1is

N1
it
MUN∩M,M(e

−2π(s+t)a)(N ) (64)

and due to the above remarks the geometrical action of1it
N∩M on the algebras of the type

Ad1is
N1
−it
M (M).

Now, the light-like translationsUtransl1(a) in l1 direction fulfil the positive spectrum
condition and mapN ∩M into itself fora > 0. Therefore, we have the Borchers commutator
relations with1it

M∩N and get

Ad1it
N_MUtransl1(a)(M) = AdUtransl1(e

−2πta)1it
N_M(M). (65)

The additivity of the net tells us that taking unions of the algebra corresponds to the causal
unions of localization regions. The assumed duality allows us to pass to causal complements
and thereby to intersections of the underlying localization regions. Therefore the algebraic
properties above transfer to unions, causal complements and intersections of regions. We
finally get [32] the following theorem.

Theorem 1. LetR be the set of regions inR1,2 containing the wedgesW [l1, l2],W [l1, l3] and
which is closed under:

(a) Lorentz boosting with312(t),313(s),

(b) intersection,
(c) (causal) union,
(d) translation inl1 direction,
(e) causal complement.

Then1it
W [l1,l2]∩W [l1,l3] maps sets inR onto sets inR in a well-computable way and extends

the subgroup (47) by a ‘hidden symmetry’.

Similarly we can look at a (1 + 3)-dim quantum field theory. Then we get the same results
as above for the modular theory to the regionW [l1, l2] ∩ W [l1, l3] ∩ W [l1, l4], whereli are
four linear independent light-like vectors inR1,3. Moreover in this case the setR contain
W [l1, l2],W [l1, l3] andW [l1, l4] is closed under boosting with312(t),313(s),314(r).

The arguments are based on the Borchers commutation relation and modular intersection
theory and also apply if we replace modular intersection by modular inclusion. One easily
recovers in this way the results of Borchers and Yngvason [42], who found an illustration of
hidden symmetries in thermal chiral conformal QFT. (Note that in thermal situations we have
no simple geometrical interpretation for the commutants as the algebra to causal complements.
Therefore, in these cases, we have to drop (e) in the above theorem.)

The final upshot of this section is to show that there might be a well-defined meaning of
a geometrical action of modular groups by restricting on certain subsystems.

For conformal LQP in any dimension, one obtains a generalization of the previous
situation. In particular, the modular group with respect to the vacuum of the double-cone
algebra is geometric [1]. Consider now a double-cone algebraA(O) generated by a free
massless field (fors = 0 take the infrared convergent derivative). Then according to the
previous remark, the modular objects of (A(O),�)m=0 are well known. In particular, the
modular group is a one-parametric subgroup of the proper conformal group. The massive
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double-cone algebra together with the (wrong) massless vacuum has the same modular group,
σt , however its action on smaller massive subalgebras inside the original one is not describable
in terms of the previous subgroup. In fact, the geometrical aspect of the action is wrecked by
the breakdown of Huygens principle, which leads to a nonlocal reshuffling insideO but still is
local in the sense of keeping the inside and its causal complement apart. This mechanism can
be shown to lead to a pseudo-differential operator for the infinitesimal generator ofσt whose
highest term still agrees with conformal zero-mass differential operator. We are, however,
interested in the modular group of (A(O),�)m with the massive vacuum which is different
from the that of the wrong vacuum by a Connes cocycle. We believe that this modular cocycle
will not wreck the pseudo-differential nature and that as a consequence the geometric nature
of the conformal situation will still be asymptotically true near the horizon of the double cone,
however, we are presently not able to show this. This modular aspect of the horizon could
be linked with what people think should be the quantum version of the Bekenstein–Hawking
classical entropy considerations, in particular the ideas about ‘holographic properties’. To
be more precise, we expect that even for double cones in Minkowski space (i.e. without a
classical Killing vector as for black holes) there will be a finite relative quantum entropy as
long as one allows for a ‘collar’ between the double cone and its space-like complement and
that with vanishing size of this collar these entropies will diverge in such a way that ratios (e.g.
for differently sized double cones) will stay finite and be determined by the conformal limits.
In this way one could hope to prove that, e.g., the speculations about entropy, holography
and the occurrence of the central terms in the energy momentum commutation relations are
nonperturbative generic properties of ordinary LQP [6]. For the thermal aspects this is, of
course, well known.

The modular group structure also promises to clarify some points concerning the physics
of the Wightman domain properties [10]. In fact these groups act linearly on the ‘field space’
i.e. the space generated by applying a local field on the vacuum. Therefore this space, which
is highly reducible under the Poincaré group, may (according to a conjecture of Fredenhagen,
based on the results in [47]) in fact carry an irreducible representation of the union of all
modular groups (an infinite-dimensional groupGmod which contains in particular all local
space-time symmetries). The equivalence of fields with carriers of irreducible representations
of an universalGmod would add a significant conceptual element to LQP and give the notion
of quantum fields a deep role which goes much beyond that of being simply generators of
local algebras. Our arguments suggest that in chiral conformal QFTGmod includes all local
diffeomorphism.

A related group theoretical approach to LQP which uses both modular groups and modular
involutions in order to formulate a new selection principle for states (‘the condition of geometric
modular action’) was proposed in [48]. In addition to the modular groups which leave the
defining local algebras invariant, these authors obtain a discrete group (from the conjugations)
which transform the (space-time) index set. All these true QFT properties remain invisible
in any quantization approach. Combining modular theory with scattering theory, the actual
J together with the incomingJ in can be used to obtain a new framework for nonperturbative
interactions [10]. This last topic will be presented in the following section; more details can
be found in a separate paper together with H-W Wiesbrock [52].

5. Constructive modular approach to interactions

The starting observation for relating the modular structure of LQP nets to interactions is that
the latter is solely contained in those anti-unitary reflections of the full Poincaré group which
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contain the time reversal. The continuous part (as well as those reflections which do not involve
time) is, thanks to the fact that scattering (Haag–Ruelle, LSZ) theory is a consequence of LQP,
the same for the free incoming particles as for the interacting net [46]:

U(3, a) = U(3, a)in (66)

J = SscJ in
ST = J1 1

2

ST A� = A∗�. (67)

HereS is the scattering matrix. The subscriptT is used in order to distinguish the Tomita
operator from the scattering matrix and theJ is the Tomita reflection for interacting wedge
algebras whereasJ in refers to the algebra generated by the incoming free field. The
standard point of view, where the interaction is introduced in terms of a pair of Hamiltonians
(Lagrangians)H,H0, accounts for the interaction in another (more perturbative) way which
uses different states. It is well known that this standard perturbative approach cannot be
directly formulated in infinite space because translational invariance together with invariance
of the vacuum is in contradiction with the existence of another HamiltonianH once a
bilinear H0 has been specified (Haag’s theorem). In perturbation theory this is not a
serious obstacle; it is formally taken care of by leaving out the pure vacuum Feynman
graphs or more carefully by using the Feynman–Gell-Mann formula in a quantization
box and taking the thermodynamic limit. The modular approach does not have this
problem.

The most promising candidates for a modular construction are obviously massive theories
with a knownS-matrix, i.e. models which permit a bootstrap construction ofS on its own,
without using the off-shell fields or local operators. For suchS-matrix integrable models, there
already exists a constructive formfactor program which goes back to Karowski and Weisz and
has been significantly extended by Smirnov [53, 54]. It uses suggestive prescriptions and
assumptions within the dispersion theoretical LSZ framework.

Since the bulk of the LSZ formalism is a consequence of the more basic algebraic QFT,
it is reasonable to ask if our modular localization framework is capable of shedding additional
light on this programme, in particular whether it can be understood as a special (analytically
simple) case of a more general nonperturbative construction without the restriction tod = 1+1
factorizing theories [10]. The crucial vehicle which carries the off-shell modular and thermal
properties of wedge regions to on-shell crossing properties of formfactors are very subtle
polarization-free wedge generators (PFG) which we will now explain.

Let us start with a very simple-minded generalization of free fields ind = 1 + 1. For the
latter we use the notation:

A(x) = 1√
2π

∫
(e−ipxa(p) + h.a.)

dp

2ω

= 1√
2π

∫
(e−imρsh(χ−θ)a(θ) + h.a.) dθ x2 < 0

= 1√
2π

∫
C

e−imρsh(χ−θ)a(θ) dθ C = R ∪ {−iπ +R} (68)

where in the second line we have introduced thex- and momentum-space rapidities and
specialized to the case of space-likex, and in the third line we used the analytic properties of
the exponential factors in order to arrive at a compact and (as it will turn out) useful contour
representation. Note that the analytic continuation refers to thec-number function, whereas
the formulaa(θ− iπ) ≡ a∗(θ) is a definition and has nothing to do with analytic continuations
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of operators†.
With this notational matter out of the way, we now write down our ansatz

F(x) = 1√
2π

∫
C

e−imρsh(χ−θ)Z(θ) dθ (69)

Z(θ)� = 0 Z(θ1)Z(θ2) = SZ,Z(θ1− θ2)Z(θ2)Z(θ1)

Z(θ1)Z
∗(θ2) = δ(θ1− θ2) + SZ,Z∗(θ1− θ2)Z

∗(θ2)Z(θ1).
(70)

For the moment theS are simply Lorentz-covariant (only rapidity differences appear) functions
which for algebraic consistency fulfil unitarityS(θ) = S(−θ).We assume (for simplicity) that
the state space contains only one type of particle.

A field operatorF(x) is called ‘one-particle polarization free’ (PF) ifF(x)� andF ∗(x)�
have only one-particle components (for any one of the irreducible particle spaces in the theory).

Obviously the aboveF(x) with Z(θ)� = 0 (but yet without the algebraic relations
which specialize the interactions to the relativistic counterpart of quantum mechanical pair
interactions) is the most general PF ind = 1 + 1. The PF property is an on-shell concept,
but note that nothing is required about the nature of state vectors which are created by several
PFs. As a result of an old structural theorem of QFT, a PF is point-like local, if and only
if it is a free field [53], i.e. if and only if the Fourier componentsZ#(θ) fulfil the free-field
commutation relation which coalesce with those of the above ansatz forSZ,Z = 1 = SZ,Z∗ .
Although interacting PFs are necessarily nonlocal, it is an interesting question how nonlocal
they must be in order not to fall under the reign of the structural theorem. It turns out that
they can be localized in wedges but any sharper localization requirement reduces them to free
fields. In the morespecial context of the above ansatzwe find [52] the following proposition.

Proposition 2. The requirement of wedge localization of a PF operatorF(f ) =∫
F(x)f (x) d2x, suppf ∈ W is equivalent to the Zamolodchikov–Faddeev structure of the

Z-algebra. The correspondingF cannot be localized in smaller regions, i.e. the localization
of F(f ) with suppf ∈ O ⊂ W is not inO but still uses all ofW .

Before doing the necessary calculation, let us put on record two more definitions of a
general kind which are suggested by the proposition.

Definition 1. We call PFs which generate the wedge algebra‡

A(W) = alg{F(f̂ ), ∀f suppf̂ ∈ W }
PFG or one-particle polarization free wedge generators [52].

We omitted thew for wedge in our shorthand notation because wedges are the ‘smallest’
regions in Minkowski space which do not have the full space as the causal closure and
possess PF. In view of the fact that we work more frequently in momentum space and its
rapidity-parametrized mass-shell restriction (often referred to as one-particle wavefunctions),
we reserve the simpler notationf without hat to the Fourier transforms.

Definition 2. We call the improvement of localization obtained by intersectingA(W) for
different wedges an improvement of ‘quantum localization’ [52], whereas the standard
localization in suppf with the use of smeared out pointlike local fieldsA(f ) is referred
to as classical (albeit in aquantumfield theory).

† Operators in QFT never possess analytic properties inx- or p-space. The notation and terminology in conformal
field theory is a bit confusing on this point, because although it is used for operators it really should refer to vector
states and expectation values in certain representations of the abstract operators. The use of modular methods require
more conceptual clarity than standard methods.
‡ In this paper we do not discuss the necessity to distinguish between localized von Neumann algebrasA(O) of
bounded operators and polynomial algebrasP(O) of affiliated unbounded operators as those formed from products
of F(f ) and their precise relation.
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We now prove the proposition by employing the so-called KMS condition for localized
algebras. This property originally arose in thermal systems in cases where the thermodynamical
limit for the infinitely extended system cannot be described in terms of a Gibbs formula (volume
divergencies), but it later turned out to be generally valid for all systems which result von
Neumann algebrasA in a cyclic and separating state vector�:

(�,Aσt (B)�) = (�, σt+i (B)A�) (71)

whereσt (B) ≡ Ad1it (B) is the action of the modular group. Local algebras in QFT are
known to have this commutation property with respect to the vacuum state at least as long as
the localization region has a nontrivial causal complement, but they generally do not admit
a natural thermodynamic limit description in terms of a sequence of increasing quantization
boxes. For the wedge regions at hand, the localized field algebras are known to have the wedge
affiliated Lorentz boost as their KMS automorphism groupσt .

Proof. Consider first the KMS property of the two-point function

〈F(f1)F (f2)〉 = 〈F(f 2π i
2 )F (f1)〉 = 〈F(f π i

2 )F (f
−iπ
1 )〉. (72)

Rewritten in terms off we have∫
f1(θ)f̄2(θ) dθ =

∫
f2(θ − iπ)f̄1(θ + iπ) dθ (73)

which is an identity in view of the fact that the wedge supports properties for the test functions
f together with their reality condition implyingf (θ − iπ) = f̄ (θ).

The four-point function 〈1, 2, 3, 4〉 consists of three contributions, one from an
intermediate vacuum state vector associated with the contraction scheme〈12〉〈34〉, another
one from the direct intermediate two-particle contribution〈14〉〈23〉 and the third one from its
exchanged (crossed) version〈13〉〈24〉. The latter is the only one which carries the interaction
in form of theS-coefficients. In the would-be KMS relation

〈F(f1)F (f2)F (f3)F (f4)〉 = 〈F(f −2πi
4 )F (f1)F (f2)F (f3)〉

f z(θ) := a.c.f |θ→θ+z
(74)

the vacuum terms and the direct terms interchange their role on both sides of the equation
and cancel out, whereas the crossed terms are related by analytic continuation. The required
equality for the crossed term brings in theS-matrix via the relations (70) and yields∫ ∫

dθ dθ ′ S(θ − θ ′)f2(θ)f̄4(θ)f1(θ
′)f̄3(θ

′)

=
∫ ∫

dθ dθ ′ S(θ − θ ′)f1(θ)f̄3(θ)f4(θ
′ − 2π i)f̄2(θ

′). (75)

Again using the above boundary relation for the wavefunctions we rewrite the last product
in the second line as̄f4(θ

′ − iπ)f2(θ
′ − iπ) and performing a contour shiftθ ′ → θ ′ + iπ ,

renamingθ ↔ θ ′ and finally using the denseness of the wavefunctions in the Hilbert space,
we obtain the crossing relation forS:

S(θ) = S(−θ + iπ). (76)

Note that we already omitted the subscripts onS, since the identitySZ,Z∗ = SZ,Z ≡ S follows
from the two different ways of calculating the crossed term, once by interchanging the two
creation operators inZ∗(θ3)Z

∗(θ4) and then performing the direct contraction and another way
by interchangingZ(θ2)Z

∗(θ3) and then being left with the vacuum contraction. Let us look at
one more KMS relation for the six-point functions of the would-be PFG.

〈F(f1) . . . F (f6)〉 = 〈F(f 2πi
6 )F (f1) . . . F (f5)〉. (77)
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This time one has many more pairings. In fact, ordering with respect to pair contraction times
four-point functions one may again group the various terms in those for which the pairing
contraction is between adjacentZ and those where this only can be achieved by exchanges.
The first group satisfies the KMS condition because of the previous verification for the two- and
four-point functions. For the crossed contributions containing the wavefunctions sayfi andf̄k,
those terms only agree on both sides after shifting upperC-contours into lower ones and vice
versa. IfS would contain poles in the physical sheet, then there are additional contributions
and the KMS property only holds if these poles occur in symmetric pairs, i.e. in a crossing
symmetric fashion. �

We will not pursue the fusion structure for theZ resulting from poles beyond noting that
the particle spectrum already shows up in the fusion of the wedge-localizedZ(f ). One of
course expects agreement of the fusion structure of our PFGs with the formal Zamolodchikov
conjecture†, however a detailed discussion of fusion would go beyond the aim of this paper
and will be the subject of a separate paper. It should be stressed that the simple quantum
mechanical picture of fusion in terms of bound states only holds for the above model with
pair interactions and not for more realistic models with real (on-shell) particle creation. All
models whether they are real particle conserving or not (except free fields) have a rich virtual
particle structure (as will be shown later), i.e. the particle content of operatorsAwith compact
localization, e.g.A ∈ A(O) complies with the ‘folklore’ that all particle matrix elements

out 〈p1, . . . , pk|A|q1, . . . , ql〉in 6= 0 (78)

as long as they are not forced to vanish by superselection rules.
Although we have explained the basic concepts in the case of diagonalS-coefficients in the

Z-algebra, one realizes immediately that one can generalize the formalism tomatrix-valued
‘pair interactions’S. The operator formalism (the associativity) then leads to the Yang–Baxter
conditions and the crossing relations are again equivalent to the KMS property for the wedge
generatorsF(f ).

The relation of the above observation with local quantum physics (LQP) becomes tighter,
if one remembers that the Lorentz boost, which featured in the above KMS condition, also
appears together with the TCP operator in the Tomita modular theory for the pair (A(W),�):

ST A� = A∗� A ∈ A(W) (79)

which defines the antilinear, unbounded, closable, involutive (on its domain) Tomita operator
ST . Its polar decomposition

ST = J1 1
2 (80)

defines a positive unbounded1
1
2 and an antiunitary involutiveJ and the nontrivial part

of Tomita’s theorem (with improvements by Takesaki) is that the unitity1it defines an
automorphism of the algebra i.e.σt (A) ≡ 1itA1−it = A and theJ maps into antiunitarily
into its commutantj (A) ≡ JAJ = A′. The wedge situation is a special illustration for the
Tomita theory. In that case both operators are well known; the modular group is the one-
parametric wedge affiliated Lorentz boost group1it = U(3(−2πt), and theJ in d = 1 + 1
LQPs is the fundamental TCP-operator (in higher dimensions it is only different by aπ -rotation
around the spatial wedge axis). The prerequisite for the general Tomita situation is that the
vector in the pair (algebra, vector) is cyclic and separating (no annihilation operators in the von

† In fact it is only through the PFG’sF(x) that theZ–F algebra and the fusion rules for theZ receive a space-time
interpretation. The close relation to a kind of relativistic QM only happens on the level of wedge localization; the
algebras resulting from intersections of wedge algebras loose this quantum mechanical aspect and show the full virtual
particle creation/annihilation polarization structure.
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Neumann algebra resp. cyclicity of its commutant relative to the reference vector). In LQP
these properties are guaranteed for localization regionsO with nontrivial causal complement
O′ thanks to the Reeh–Schlieder theorem. Returning to our wedge situation we conclude from
the Bisognano–Wichmann result that the commutant ofA(W) is geometric, i.e. it fulfils Haag
dualityA(W)′ = A(W ′), a fact which can be shown to be modified by Klein factors inJ in
case of deviation from Bose statistics.

There is one more structural element following from ‘quantum localization’ beyond wedge
localization.

Proposition 3. Operators localized in double conesA ∈ A(O) obey a recursion relation in
their expansion coefficients in terms of PFG operators

A =
∑ 1

n!

∫
C
. . .

∫
C
an(θ1, . . . θn) : Z(θ1) . . . Z(θn) : dθ1 . . .dθn

=
∑ 1

n!

∫
. . .

∫
ân(x1, . . . xn) : F(x1) . . . F (xn) : d2x1 . . .d

2xn

suppâ ∈ W⊗n

i lim
θ→θ1

(θ − θ1)an+1(θ, θ1, . . . , θn) =
(

1−
n∏
i=2

S(θ1− θi)
)
an−1(θ2, . . . , θn).

Remark 1. In order to compare (see below) with Smirnov’s [54] axioms we wrote the recursion
in rapidity space instead of inx-space light-ray restriction which would be more physical and
natural to our modular approach. The series extends typically to infinity. Only for special
operators (e.g. bilinears as the energy momentum tensor) in special models with rapidity
independentS-matrices (e.g. Ising, Federbush) for which the bracket involving the product of
two-particleS-matrices vanishes, the series restricts to a polynomial expression in Z. Therefore
apart from these special cases, an operatorA ∈ A(O) with a1 6= 0 applied to the vacuum
creates a one-particle component which an admixture of an infinite cloud of additional particles
(particle–antiparticle polarization cloud). The above recursion together with Payley–Wiener-
type bounds for the increase of thean in imaginaryθ -directions (depending on the shape and
size ofO).

The proof follows rather straightforwardly from the quantum localization idea

A(O) = [U(a)A(W)U−1(a)]′ ∩A(W) (81)

i.e. we are considering the relative commutant inside the wedge algebra. Using the PFG’s
F(f ), theA ∈ A(O) are characterized by [52]

[A,F(f̂a)] = 0 ∀f̂ ∈ W (82)

where f̂a(x) = f̂ (x − a), a ∈ W. One immediately realizes that the contribution of the
commutator to thenth power inF yields a relation between thean−1 and an+1 (from the
creation/annihilation part ofF(f̂a)). The details of this relation are easier, if one passes to the
light-ray restriction which in the present approach turns out to be a very nontrivial result of
modular theory [52,55,56].

Proposition 4. The relative commutant for light-like translations witha+ = (1, 1) defines a
‘satellite’ chiral conformal field theory via the (half) net on the (upper) + light ray

A(Ia,e2πt+a) = U(a, a)1−it
(
A(Wa+)

′ ∩A(W))1itU−1(a, a) (83)

whereIa,b with b > a > 0 denotes an interval on the right upper light ray. This net is cyclic
and separating with respect to the vacuum in the reduced Hilbert space

H+ =M+� = P+H ⊂ H = A(W)�
M+ ≡ ∪tA(I0,e2πt ) E+(A(W)) =M+ = P+A(W)P+

(84)
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where the last relation defines a conditional expectation. The application ofJ to gives the left
lower part of this light ray which is needed for the full net.

Remark 2. The most surprising aspect of this proposition is that this light-ray affiliated chiral
conformal theory exhibits the ‘blow-up’ property, i.e. can be activated to reconstitute the
two-dimensional net by association of the− light-ray translation

A(W) = alg∪a>0{M+, U−(a)}
A = A(W) ∨A(W)′. (85)

The Moebius groupsSL(2, R)± account for six parameters in contradistinction to the three
parameters of the two-dimensional Poincaré group of the massive theory. Most of the former
are ‘hidden’ and the original theory perceives these additional symmetries only in its P±
projections (for the proofs see [52,56]).

The light-ray reduction reduces the derivation of the recursion relation to a one-
dimensional LQP problem and the reader may carry out the missing algebra without much
effort. This reduction also helps significantly in the demonstration that theA(O) spaces
are nontrivial, i.e. contain more elements than multiples of the identity. It is a fascinating
experience to see that the existence problem for nontrivial QFTs (which in the quantization
approach always pointed in the direction of getting good short-distance properties and in
particular the renormalizability requirement dimLint 6 dim space-time), in the modular
approach, which does not use individual ‘field-coordinatizations’, relates the existence of
nontrivial field theories associated with interacting PFGs to the nontriviality of intersections
which represent double-cone algebras. The above constructions only determine operators in
the sense of bilinear forms.

At this point it is appropriate to address the question of what we learned from this approach
as compared with the Karowski–Weisz–Smirnov ‘axiomatics’ [53]†. Actually, a considerable
part of that axiomatics has been reduced to specializations of general field-theoretic properties
within the LSZ framework [50], apart from the algebraic and analytic aspects of the fundamental
crossing property. Since the LSZ formalism itself can be derived from the basic causality and
spectral properties of say Wightman QFT, one may even want to have a more direct physical
understanding of the other properties. This is achieved by realizing that thean-coefficients
have the interpretation of the connected part of formfactors ofA, for selfconjugate models

an(θ1, . . . , θn) = 〈�|A|θ1, . . . , θn〉in
θ1 < θ2 < · · · < θn

(86)

an(θ1, . . . , θν, θν+1− iπ, . . . , θn − iπ) = out 〈θ1, . . . , θν |A|θν+1, . . . ; θn〉inconn. (87)

The relations for different orderings ofθ follows from the algebraic structures of theZ.
In the diagonal case this connection betweenZ and in- and out-creation/annihilation

operators can be seen directly via representing theZ in a bosonic/fermionic Fock space of the
incoming particles in the form

Z(θ) = ain(θ)ei
∫
a∗in(θ)a(θ) dθ . (88)

However, such representations are not known for the nondiagonal case. But once
one obtained the double-cone localized operators the theory itself (scattering theory as a
consequence of the locality + spectral structure) assures the existence ofZ in terms of incoming
particle creation/annihilation operators, albeit not in terms of simple exponential formulae.

The modular theory for wedges in terms of PFGs really explains the KWS axiomatics by
integrating it back into the fundamental principles of general QFT. In particular, the notoriously

† Our operator notation is closer to Lashkevich 1994 [54].
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difficult crossing symmetry for the first time finds its deeper explanation in Hawking–Unruh
thermal KMS properties once one realizes that a curved space-time Killing vector (a classical
concept) is not as important quantum localization of operator algebras. With these remarks we
have achieved our goal of deriving and explaining all axioms of the KWS approach in terms
of localization properties of PFGs with pair interactions.

This raises the question if the PFG’sF(x) in their property as wedge algebra generators,
could not also exist for higher dimensions. In that case their application more than one time to
the vacuum would generate a state whose particle content (the real particle structure) is already
very complicated. As is often the case in general QFT, it is easier to see what does not work,
i.e. to prove no-go theorems. Indeed, if the interacting PFGs exist at all, their causally closed
living spaceO cannot be (even a tiny little bit) smaller than a wedgeO ⊂ W . As was already
stated at the beginning, if there would be space-like directions with an arbitrarily small conic
surrounding which are contained inW but not inO, it is fairly easy to generalize the proof† of
the Jost–Schroer theorem and show that the commutators of such PFGs must be ac-number
which is determined by their two-point function. However, the method used in those No-Go
theorems has no extension to the wedge region. If wedge algebras can indeed be generated
by PFGs, one expects again that modular theory does not only relate them to theS-matrix
so that their correlations can be expressed in terms of products ofS-matrix elements (with
partial summations reminiscent of inclusive processes) and furthermore that the mysterious
crossing symmetries for theS-matrix and formfactors find their explanation in the thermal
KMS properties. This surprising relation between particle physics and the thermal properties
of Hawking–Unruh wedge horizons has attracted the attention of many physicists, the ideas
most close to those of the present work and several older papers [46] of the present author are
those in [49]. However, it should be clear that as long as higher-dimensional PFGs have yet to
be constructed or at least their existence established, the mediators between off- and on-shell
are still missing and there is no proof beyond the one for factorizing models presented before.

There is also an interesting extension of the KWS axiomatics in the form of a pair of satellite
chiral conformal theories. In contradistinction to the standard short-distance association the
light-ray association via modular theory is not just a one-way street; the blow-up property
with the help of adjoining the opposite light-cone translation allows us to return, so that hidden
conformal symmetries become relevant for the massive theory or more precisely for the massive
theory projected into theH± subspaces.

Note that the present construction principle can be directly used for the systematic
construction of chiral conformal theories. For the construction ofW -like algebras one starts
with PFG generators on a half-line. Modular theory assures us that in principle every system
of S-coefficients fulfilling theZ–F algebra leads to a bosonic/fermionic conformal theory
granted that the previous relative commutator algebra is nontrivial. This is a construction
scheme which could not have been guessed within the framework of point-like fields.

Another apparently simple but untested idea suggested by the present concepts is the
classification of wedge algebras with nongeometric commutator algebras via statistics Klein
factors or constantS-matrices inJ . Examples are the Ising field theory and the order/disorder
fields. For the more interesting case of plektonicR-matrices which appear in the exchange
algebras [58] of charge carrying fields, one knows that these algebras in contradistinction
to bosonic/fermionic (e.g.W -algebras) are incomplete since the distributional character at
coalescent points is left unspecified. This is not the case if one uses the R-data as an input into
plektonicZ#(θ). The Hilbert space obtained by iterative application ofZ-creation operators is
not compatible with a Fock space structure. Rather, then-particle subspace has the structure of a

† I learned this from D Buchholz.
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path space as known from the representation theory of intertwiner algebras. The combinatorial
complications should be offset by the simplicity of constantS-matrices. As the operator
representation of the massive Ising model shows, the constantS case should even have a
simple coefficient series in the massive case.

6. Concluding remarks

Whereas causality and locality principles used to play an important role in the past (the LSZ
framework, the Kramers–Kronig relations in high-energy physics and their experimental check
in high-energy nucleon scattering), they have been less prominent in the more global functional
integral formulation of QFT. InS-matrix models as the Veneziano dual model the role of these
principles is even harder to see, but the idea that crossing symmetry which underlies duality
is a deep on-shell manifestation of causality always carried a lot of plausibility. The difficulty
here is that crossing symmetry was primarily an observation on Feynman diagrams whose
relation to the causality- and particle-structure was never clarified as that of other symmetries,
e.g. as happened with the simpler TCP symmetry. In fact, the dual model which was originally
intended to probe the structure of a nonperturbativeS-matrix and to shed light on the elusive
crossing symmetry, was soon treated as a separate issue with the original QFT motivation being
forgotten. After several abrupt changes of interpretation and also finally of the mathematical
formalism (the so-called ‘string revolutions’) it finally reached its present form of string theory
with interesting mathematical connections but without convincing conceptual content. The
status of locality within interacting string theory is unknown (the answer one gets depends
on the person one asks†). If the word string could be interpreted as indicating a space-
time localization and not just referring to certain spectral properties, then it would be part of
local QFT and all the structural statements in this article would immediately be applicable.
However, in this case it should be possible to have an intrinsic formulation (say, analogous to
the Wightman framework). As it stands now, string theory is synonymous with a collection
of computational steps. Related to this is the total lack of an answer to the question: what
physical principle is it which asks for a string-like extension in order to be realized? One
should like to have a physically more compelling reason than just saying that after having been
interested for many years in point-like fields one wants to study string-like extensions.

The development of physical theories has been (and still is in my opinion) the unfolding of
ever more general realizations of physical principles. For example, the semi-infinite string-like
localization ofd = 2 + 1 anyons/plektons or topological charges (in the sense of algebraic
QFT [1]) is required by the more general realization of causality; if one allows only compact
extensions, one would fall back on bosons/fermions and ordinary charges. Most structural
properties in LQP have been understood as an unfolding of realizations of physical principles.
One hopes that this fruitful viewpoint of this century may not get completely lost in the ongoing
process of marketing and globalization in the production of publications which is taking place
at the end of it.

Note added in proof. There have been very interesting new results by modular methods [59].
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